
XVII JORNADAS DE PARALELISMO—ALBACETE, SEPTIEMBRE 2006 1

A fault tolerant coherence protocol for CMP
architectures

Ricardo Fernández-Pascual, José M. Garćıa and Manuel E. Acacio

Universidad de Murcia

Grupo de Arquitectura y Computación Paralela

{r.fernandez,jmgarcia,meacacio}@ditec.um.es

Abstract—It is a well known fact that transient fail-
ures will increase in chips designed in the near future
due to several factors such as the increased integra-
tion scale. On the other hand, chip-multiprocessors
(CMP) that integrate several processor cores in a sin-
gle chip are nowadays the best alternative to more ef-
ficient use of the increasing number of transistors that
can be placed in a single die. Hence, it is necessary to
design new techniques to deal with these faults to be
able to build sufficiently reliable Chip Multiprocessors
(CMPs). In this work, we present a coherence proto-
col aimed at dealing with transient failures that affect
the interconnection network of a CMP assuming that
the network is no longer reliable.

Keywords— Fault tolerance, cache coherence, CMP,
transient failures.

I. Introduction

IN many applications, high availability and relia-
bility are critical requirements. The widespread

use of scalable shared-memory multiprocessors and
CMPs in critical tasks can be hindered by the in-
creased transient rate of faults due to the ever de-
creasing feature size and higher frequencies. To en-
able more useful chip multiprocessors to be designed,
several fault tolerant techniques must be used.

Moreover, the reliability of electronic components
is never perfect. Electronic components are subject
to several types of failures due to a number of causes.
Failures can be either permanent, intermittent or
transient. Permanent failures require the replace-
ment of the component and are caused by electro-
migration among other causes. Intermittent failures
are mainly due to voltage peaks or falls.

Transient failures, also known as soft errors or sin-
gle event upsets, occur when a component produces
an erroneous output and it continues working cor-
rectly after the event. The causes of transient er-
rors are multiple and include alpha-particle strikes,
cosmic rays and radiation from radioactive atoms
which exist in trace amounts in all materials and elec-
trical sources like power supply noise, electromag-
netic interference (EMI) or radiation from lightning.
Any event which upsets the stored or communicated
charge can cause soft errors in the circuit output.

Transient failures are much more common than
permanent failures [1]. Currently, transient failures
are already significant for some devices like caches,
where error correction codes are used to deal with
them. However, current trends of higher integration
and lower power consumption will increase the im-
portance of transient failures [2]. Since the number

of components in a single chip increases so much, it
is no longer economically feasible to assume a worst
case scenario when designing and testing the chips.
Instead, new designs will target the common case and
assume a certain rate of transient failures. Hence,
transient failures will affect more components and
more frequently and will need to be handled across
all the levels of the system to avoid actual errors.

In message passing machines, message loss can
be solved at the library level (usually MPI) or us-
ing reliable network protocols. In those machines,
communication patterns are controlled by the ap-
plication developer, so communication tends to be
coarse-grained and most messages are larger than in
shared-memory machines. Hence the cost of reliable
transmission in message-passing architectures is as-
sumable.

On the contrary, shared-memory machines do not
rely in any library to deal with dropped messages.
Communication is very fine-grained (at the level of
cache blocks from 64 to 256 bytes), hence smaller and
more frequent messages are used. In order to achieve
the best possible performance it is necessary to use
low-latency interconnections and avoid acknowledge-
ment messages and other control-flow messages. For
these reasons, dropped messages seriously limit the
scalability of these machines.

In this work, we propose a way to deal with the
transient failures that occur in the interconnection
network of shared-memory multiprocessor systems.
We can assume that these failures cause the loss of
some messages, because either the interconnection
network losses them, or the messages reach the des-
tination node (or other node) corrupted. Messages
corrupted by a soft error will be discarded upon re-
ception using error detection codes.

In order to build shared-memory machines as re-
liable and scalable as possible, we need to build
large, reliable and low-latency interconnection net-
works both on chip and off chip, which are hard to
design and expensive; an alternative is to add enough
fault-tolerance to our system to cope with an unre-
liable interconnection network.

In this we paper attack this problem at the coher-
ence protocol level. We propose a coherence protocol
which assumes an unreliable interconnection network
and guarantees correct execution in the presence of
dropped messages. Our proposal only modifies the
coherence protocol and does not add any requirement
to the interconnection network, so it is applicable to



2 FERNÁNDEZ-PASCUAL, GARCÍA AND ACACIO: A FAULT TOLERANT COHERENCE PROTOCOL

current and future glueless designs. Up to the best of
our knowledge, no previous proposal has addressed
this topic yet.

Recently, a new kind of coherence protocols have
been proposed. Token coherence protocols [3] avoid
the need of a totally ordered network and the intro-
duction of additional latency in the common case.
Several variants of token coherence protocols are pos-
sible for small, medium and large scale multiproces-
sors. Token protocols decouple the correctness sub-
strate from the performance policy, allowing greater
flexibility and reducing the complexity of designing
new protocols.

To take advantage of this decoupling, we have
based our proposal on a token based coherence pro-
tocol for Multiple-CMPs [4] but we expect that these
ideas are applicable to any token based protocol. De-
coupling correctness and performance allows us to
concentrate on fault-tolerance at the level of the cor-
rectness substrate and avoid penalizing the common
case.

In this work, we have designed a new coherence
protocol for CMPs and multiple CMPs (M-CMPs)
based on token coherence which ensures correct be-
havior from the coherence and consistency point of
view even if some coherence messages do not arrive
to their destination. Also, we have measured the
overhead introduced by the new protocol compared
to a similar protocol without fault tolerance support
using full-system simulations.

The rest of this paper is organized as follows.
In section II we present some related works, in-
cluding some proposals for fault tolerance using
checkpointing for scalable multiprocessors and a
summary of the base coherence protocol. In sec-
tion III we describe a new approach for designing a
fault-tolerant coherence protocol that tries to avoid
checkpointing and does not need a reliable intercon-
nection network. Section IV presents a preliminary
evaluation of the protocol. Finally, in section V we
present some conclusions.

II. Related Work

A. Fault tolerance for shared-memory multiproces-

sors

There have been several proposals for dealing with
fault tolerance in cache-coherent multiprocessor sys-
tems, either for those using a shared bus or an un-
ordered interconnection network. Most of these pro-
posals use variations of checkpointing and recovery.
In most cases, some amount of hardware redundancy
is necessary too, at least to ensure the reliability of
the fault-tolerant support hardware itself.

A large body of literature exists concerning
checkpointing and recovery, primarily for message-
passing loosely coupled distributed systems rather
than tightly coupled shared-memory multiprocessors
[5] [6] [7]. Recovery strategies, using rollback and
replay of input messages, for message-passing dis-
tributed systems are not generally applicable to re-
covery from transient errors in shared-memory mul-

tiprocessors.

However, there have been several proposals target-
ing shared-memory multiprocessors: R.E. Ahmed et

al. developed Cache-Aided Rollback Errors Recovery
(CARER) [8], Wu et al. [9] developed error recovery
techniques using private caches for recovering from
processor transient faults in multiprocessor systems,
Banâtre et al. propose a Recoverable Shared Memory

(RSM) which deals with processor failures on shared-
memory multiprocessors using snoopy protocols [10]
[11], while Sunada et al. propose Distributed Re-

coverable Shared Memory with Logs (DRSM-L) [12].
More recently, Pruvlovic et al. presented ReVive,
which performs checkpointing, logging and memory
based distributed parity protection with low over-
head in error-free execution and is compatible with
off-the-shelf processors, caches and memory modules
[13]. At the same time, Sorin et al. presented Safe-
tyNet [14] which aims at similar objectives but has
less overhead, requires custom caches and can only
recover from transient faults.

B. Token coherence

Token coherence [15] is a framework for designing
coherence protocols whose main asset is that it de-
couples the correctness substrate from several differ-
ent performance policies. This allows a great flexibil-
ity, making possible to adapt the protocol for differ-
ent purposes easily [3] since the performance policy
can be modified without worrying about infrequent
corner cases, whose correctness is guaranteed by the
correctness substrate.

The main observation of the token framework is
that simple token counting rules can ensure that the
memory system behaves in a coherent manner. To-

ken counting specifies that each block of the shared
memory has a fixed number of tokens and that the
system is not allowed to create or destroy tokens.
A processor is allowed to read a block only when it
holds at least one of the block’s tokens and has valid
data, and a processor is allowed to write a block only
when it holds all of its tokens and valid data. One of
the tokens is distinguished as the owner token. The
processor or memory module which has this token
is responsible for providing the data when another
processor needs it or write it back to memory when
necessary. The owner token can be either clean or
dirty, depending whether the contents of the cache
block are the same as in main memory or not, respec-
tively. In order to allow processors to receive tokens
without receiving data, a valid-data bit is added to
each cache block (independently of the usual valid-
tag bit). These simple rules prevent a processor from
reading the block while another processor is writing
it, ensuring coherent behavior at all times.

Token coherence avoids starvation by issuing a
persistent request when a processor detects poten-
tial starvation. Persistent requests, unlike transient
requests, are guaranteed to eventually succeed. To
ensure this, each token protocol must define how it
deals with several pending persistent requests.



XVII JORNADAS DE PARALELISMO—ALBACETE, SEPTIEMBRE 2006 3

Token coherence provides the framework for
designing several particular coherence protocols.
Building upon the correctness substrate, a variety
of performance policies may be designed specifying
the precise behavior of each processor and memory
module to different coherence messages.

To date, only a few performance policies have
been designed: Token-using-broadcast (TokenB) is
a performance policy to simultaneously achieve low-
latency cache-to-cache transfer misses and is faster
than both traditional snooping protocols and direc-
tory protocols, although it requires more bandwidth
[15]. Token-based-directory (TokenD) [3] emulates
a directory based protocol using the token frame-
work. TokenM [3] is a performance policy that
seeks a compromise between bandwidth usage and la-
tency by means of prediction. Finally, TokenCMP

[4] is a performance policy similar to TokenB which
targets hierarchical multiple CMP systems.

III. A fault tolerant token coherence

protocol

We currently consider errors resulting in loss of
protocol messages, either losing an isolated message
or a burst of messages. Instead of detecting faults
and return to a consistent state previous to the oc-
currence of the fault, our aim is to design a coher-
ence protocol that can guarantee the correct seman-
tics of program execution over an unreliable inter-
connection network without ever having to perform
a checkpointing or rollback. We do not try to ad-
dress the full range of errors that can occur in a CMP
system. We only concentrate on those errors that af-
fect directly the interconnection network and which
can be tolerated modifying the coherence protocol.
Hence, other mechanisms must be used to comple-
ment our proposal in order to achieve full fault tol-
erance.

Our proposal modifies the correctness substrate of
the token protocol assuming an unreliable intercon-
nection network. Thanks to decoupling correctness
from performance, the performance policies can still
be used with minimal or no changes. This minimizes
the performance impact in the common fault-free
case.

A. Possible faults

Loosing some of the coherence messages in a to-
ken coherence protocol, like transient requests, is
harmless. Note that even when we state that losing
the message is harmless we mean that no data loss,
deadlock, or incorrect execution would be caused, al-
though some performance degradation may happen.

Coherence messages in a token protocol can con-
tain one or more tokens which would be lost if a
message is lost. The total number of tokens in the
whole system must remain constant to ensure the
correct behavior of the system. More precisely, if
the number of tokens decreases, no processor will be
able to write to that block of memory anymore. On
the other hand, if the number of tokens increases,

a processor would be able to write to the memory
block while another processor keeps a readable copy,
violating the memory coherence model.

Hence, if a coherence message containing a token
were lost, a deadlock would occur. We propose a
mechanism for detecting this fact and recovering the
lost token or tokens.

Also, coherence messages can contain data. In par-
ticular, if a coherence message contains a dirty owner
token, then it must also carry the memory block. If
a message containing data but not the owner token
is lost, the requester will eventually time out and ask
again for the data (with a retried transient request
or with a persistent request). However, if the owner
token is lost too, no processor (or memory module)
would send the data and a deadlock and possibly
data loss would occur.

Finally, while a persistent request is in process, we
have to deal with errors in the persistent request mes-
sages as well as the same errors as in the usual case.
Losing a persistent request or persistent request de-
activation would create inconsistencies amongst the
persistent request tables at each node in a distributed
arbitration scheme.

We present a summary of all the possible problems
due to loss of messages in table I. Only the messages
that are found in TokenCMP with a distributed
arbitration for persistent requests are shown. Later,
we show how to prevent or solve each one of those
situations.

TABLE I

Summary of possible problems due to loss of messages.

Message lost Effect

Transient read/write request Harmless
Response with tokens Deadlock
Response with tokens and data Deadlock
Response with a clean owner to-
ken

Deadlock

Response with a dirty owner to-
ken and data

Deadlock
and data loss

Persistent read/write requests Deadlock
Persistent requests Deadlock

B. Adding fault-tolerance to the base protocol

To prevent adding a significant overhead to the
fault-free case and to keep the flexibility of choosing
any particular performance policy, we should try to
avoid modifying the usual behavior of transient re-
quests. For example, we should avoid placing point-
to-point acknowledgements in the critical path as
much as possible.

Since the base protocol does not have unacknowl-
edged invalidations, loosing a message cannot lead
to an incoherence. In every problematic case shown
in table I, loosing a message would lead to a dead-
lock. Hence, a possible way to detect faults is using
timeouts for transactions. The timeout may be trig-
gered for the same coherence transaction that losses



4 FERNÁNDEZ-PASCUAL, GARCÍA AND ACACIO: A FAULT TOLERANT COHERENCE PROTOCOL

the message or for a subsequent transaction. We call
this timeout the “lost token timeout” and it will start
when a persistent request is activated and will stop
once the miss is satisfied or the persistent request is
deactivated.

Since the time to complete a transaction cannot be
bounded reliably with a reasonable timeout due to
the interaction with other requests and the possibil-
ity of network congestion, our fault detection mech-
anism may produce false positives, although this
should be very infrequent. Hence, we must ensure
that our corrective measures are safe even if no fault
really occurred.

In some cases, we will need to recreate possibly
lost tokens. When doing this, we must respect the
Conservation of Tokens invariant [3]. So, to avoid
increasing the total number of tokens for a memory
block even in the case of a false positive, we need
to ensure that all the old tokens are discarded. To
achieve this we define a token serial number concep-
tually associated with each token and each memory
block.

All tokens of the same memory block should have
the same serial number. Every node in the system
must know the serial number associated with each
memory block and should discard every message re-
ceived containing an incorrect serial number. The
serial number will be transmitted within every co-
herence response.

The overhead associated with the token serial
number is small. In the first place, we will need
to increase it very infrequently, so a counter with
a small number of bits should be enough (we as-
sume a two bit wrapping counter). Secondly, most
memory blocks will keep the initial serial number un-
changed, so we only need to store those ones which
have changed and assume the initial value for the
rest. Thirdly, the comparisons required to check the
validity of received messages can be done out of the
critical path. To avoid filling the token serial number

table, serial numbers can be reset after some time.

To store the token serial number of each block
we propose a small associative table present at each
node. Only blocks with an associated serial number
different than zero must keep an entry in that table.
The information of the tables must be identical in all
the nodes, so we must ensure a reliable protocol for
updating it. Since updates to this table should be
very infrequent, we can use point-to-point acknowl-
edgments in this case.

B.1 Dealing with token loss

When a message containing one or more tokens
is lost, the total number of tokens in the system de-
creases. As stated above, this would lead to deadlock
because no processor will be able to write anymore
to that block.

When a processor tries to write to a memory block
which has lost a token, it will eventually timeout and
issue a persistent request. Eventually, after the per-
sistent request gets activated, all the available tokens

in the whole system for the memory block will be re-
ceived by the starving node. Also, if the owner token
was not lost, the node will receive it too together with
data.

If the starving node fails to acquire the necessary
tokens within certain time after the persistent re-
quest has been activated, the lost token timeout will
trigger. In that case, we will assume that some token
carrying message has been lost and we will start the
recovery process.

Once the problem has been detected, it is safe
for the starving node to recreate the missing to-
kens, because it is guaranteed that no other processor
or memory module has any token for that memory
block. Once the tokens are restored, the operation
can continue normally.

B.1.a Token recreation process. This process
needs to be effective, but since it should happen very
infrequently, it does not need to be particularly effi-
cient. In order to avoid any race and keep the process
simple, the memory controller will serialize the token
recreation process. The process works as follows:

The starving node that detects the problem sends
a recreate tokens request to the memory controller
responsible for that line. That request also informs
whether the requester node has valid data for the
line or not. The memory will then increase the token

serial number associated to the line and send a set

token serial number message to every node. When
receiving that message, each node updates the to-

ken serial number, destroys any token that it could
have and sends an acknowledgment to the memory.
Additionally, if the node has a backup of the line
(see section III-B.2 to see when this happens), it
is sent to the directory with the acknowledgment.
Once the memory receives all the acknowledgments,
it will send a destruction done message to the starv-
ing node. If the starver did not have the data when
requesting the token recreation and the memory has
received one1 backup copy of the data, it will send
it in the same message. Once the node receives this
message, it recreates all the tokens and continues.

If there was no real failure but a token carrying
message was delayed on the network due to conges-
tion, it will be discarded when received by any node
because the token serial number will not match.

B.2 Avoiding data loss

The rules governing the owner token ensure that
there is always at least a valid copy of the mem-
ory block which travels along with it every time the
owner token is transmitted. So, losing the owner to-
ken means that it is possible to totally lose the data
of a memory block.

1If the memory has received more than one backup of the
line and the node requested the data, there is no way to recover
from the failure since it is not possible to know which backup
data is the newest version of the block. To get to this unlikely
situation, a number of particular messages (including several
acknowledgments and a data message) need to have been lost
repeatedly.



XVII JORNADAS DE PARALELISMO—ALBACETE, SEPTIEMBRE 2006 5

To avoid losing data, a node that has to send the
owner token will keep the line in backup state. A line
in backup state will not be evicted from the cache un-
til an ownership acknowledgment is received, even if
every token is sent to other nodes. This acknowledg-
ment is sent by every node in response to a message
carrying the owner token.

While a line is in backup state its data may be
invalid. Hence, the node will no be able to read from
that line unless it receives valid data (and a token)
from other node. This data will be used to answer to
a set serial number request if necessary as described
in paragraph III-B.1.a.

Notice that this mechanism also affects replace-
ments (from L1 to L2 and from L2 to memory) and
will increase their latency.

B.2.a Handling the loss of an ownership ac-

knowledgment or a data carrying message.
If an ownership acknowledgment message is lost, the
line in backup state will never be evicted. Also, this
would make possible to have more than one backup
copy for recovering from data loss. To avoid this,
a node which holds a line in backup state for more
than certain amount of time will issue a persistent
write request for that line. If the persistent request is
eventually satisfied, that means that the ownership

acknowledgment was actually lost, but the data is
safe and the system can continue to work normally.
If the persistent request can not be satisfied, that
means that the data carrying message was lost, hence
the node can start the recovery process described in
paragraph III-B.1.a using its backup copy as the new
data. The timeout used for the ownership acknowl-

edgment must be significantly shorter than that for
the lost token timeout.

B.3 Dealing with errors in persistent requests

Assuming a distributed arbitration policy, persis-
tent request messages (both requests and deactiva-
tions) are always broadcasted to keep the persistent
requests tables at each node synchronized. Losing
one of these messages will lead to an inconsistency
amongst the different tables. This inconsistency can
be fixed reissuing the persistent request or request
deactivation. For this to work correctly, the logic of
the persistent request table needs to be modified to
handle duplicated requests or unexpected deactiva-
tions.

B.3.a Dealing with the loss of a request. If
a node holding at least one token for the requested
line does not receive the persistent request, it will not
activate it and will not send the tokens and data. To
avoid this situation, the starving node can reissue
the persistent request after a certain timeout. This
timeout should be significantly shorter than the lost

token timeout.

If the node that does not receive the persistent re-
quest did not have tokens necessary to satisfy the
miss, it will eventually receive an unexpected deac-
tivation message which it should ignore.

TABLE II

Characteristics of simulated machine

4-Way CMP System

Processor Parameters

Processor speed 2 GHz
Max. fetch/retire rate 4

Cache Parameters

Cache block size 64 bytes
L1 cache:

Size, associativity 32 KB, 2 ways
Hit time 2 cycles

Shared L2 cache:
Size, associativity 512 KB, 4 ways
Hit time 15 cycles

Memory Parameters

Memory access time 300 cycles
Memory interleaving 4-way

Network Parameters

Topology Fully connected
Non-data message size 2 flits
Channel bandwidth 64 GB/s

B.3.b Dealing with the loss of a deactivation.
If a persistent request deactivation message is lost,
the request will be permanently activated at some
node. To avoid this, the node will send a persistent

request ping to the starver after a certain amount
of time. A node receiving a persistent deactivation

ping will answer it with a persistent request or per-
sistent request deactivation message whether it has
a pending persistent request for that line or not, re-
spectively.

IV. Evaluation

We have done a preliminary implementation of our
protocol using the GEMS simulator and compared it
against the original TokenCMP [4] protocol. We
model a 4-way chip multiprocessor whose more rel-
evant characteristics are shown in II. We use an in-
order processor model for simplicity, but the pro-
cessor frequency is four times as fast as the memory
system frequency to approximate a 4-way superscalar
model. We have used a number of scientific bench-
marks to perform the evaluation.

In figure 1 we show the execution time overhead
incurred by our fault-tolerant protocol in the fault-
free case compared to a base TokenCMP protocol
without any fault tolerance support. As we can see,
this overhead is near to 5% in average and is as high
as 11% in the worst case.

The overhead comes from two issues: the extra
bandwidth consumed by the acknowledgements and
the increased replacement latency mentioned in sec-
tion III-B.2. The second issue is significantly more
important, since it increases the average latency of
misses, and we are currently studying ways to mini-
mize its impact.

V. Conclusions

The rate of transient failures in new chips will in-
crease in the near future due a number of factors like
the increased scale of integration, the lower voltages
used and changes in the design process. This will cre-
ate problems for CMPs that will need new techniques



6 FERNÁNDEZ-PASCUAL, GARCÍA AND ACACIO: A FAULT TOLERANT COHERENCE PROTOCOL

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstructured

waternsq
watersp

Average

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

11.00%

1.16%

7.50%

8.46%

10.75%

7.41%

0.92%

5.11%

7.35%

0.38% 0.28%

4.93%

Fig. 1. Execution time overhead of our protocol compared to
TokenCMP.

to avoid errors. One important source of problems
will be faults in the interconnection network used to
communicate between the cores and the caches. In
this work, we have proposed a new coherence proto-
col which can work over an unreliable network aimed
at dealing with those faults.

We have shown some preliminary results evaluat-
ing the execution time overhead introduced in the
error-free case. We have not measured the impact of
faults in the execution time yet, but we have tested
the fault tolerance of most parts of the proposed pro-
tocol.

The hardware overhead required to implement the
fault-tolerance measures proposed for our protocol is
minimal: just a small associative table at each cache
to store the token serial number.

Unfortunately, the overhead introduced in the
fault-free case is currently higher than desirable and
we are studying ways to reduce it, like using victim
caches to store the lines in backup states.

Acknowledgements

This work has been supported by the Spanish
Ministry of Ciencia y Tecnoloǵıa and the European
Union (Feder Funds) under grant TIC2003-08154-
C06-03. Ricardo Fernández-Pascual has been sup-
ported by the fellowship 01090/FPI/04 from the Co-
munidad Autónoma de la Región de Murcia (Fun-
dación Séneca, Agencia Regional de Ciencia y Tec-
noloǵıa).

References

[1] Toshinori Sato, “Exploiting instruction redundancy for
transient fault tolerance,” in 18th International Sym-
posium on Defect and Fault Tolerance in VLSI Systems
(DFT), November 2003, pp. 547–554.

[2] Atul Maheshwari, Wayne Burleson, and Russell Tessier,
“Trading off transient fault tolerance and power con-
sumption in deep submicron (DSM) VLSI circuits,”
IEEE transactions on very large scale integration (VLSI)
systems, vol. 12, no. 3, pp. 299–311, March 2004.

[3] Milo M.K. Martin, Token Coherence, Ph.D. thesis, Uni-
versity of Wisconsin-Madison, December 2003.

[4] Michael R. Marty, Jesse D. Bingham, Mark D. Hill,
Alan J. Hu, Milo M. K. Martin, and David A. Wood, “Im-
proving multiple-cmp systems using token coherence,”
in HPCA ’05: Proceedings of the 11th International
Symposium on High-Performance Computer Architec-
ture, Washington, DC, USA, 2005, pp. 328–339, IEEE
Computer Society.

[5] Richard Koo and Sam Toueg, “Checkpointing and
rollback-recovery for distributed systems,” IEEE Trans-
actions on Software Engineering, vol. 13, no. 1, pp. 23–
31, January 1987.

[6] Yuval Tamir and Carlo H. Sequin, “Error recovery in
multicomputers using global checkpoints,” in 13th In-
ternational Conference on Parallel Processing, August
1984, pp. 32–41.

[7] E.N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and
David B. Johnson, “A survey of rollback-recovery pro-
tocols in message-passing systems,” ACM Computing
Surveys, vol. 34, no. 3, pp. 375–408, September 2002.

[8] R.E. Ahmed, R.C. Frazier, and P.N. Marinos, “Cache-
aided rollback error recovery (CARER) algorithm for
shared-memory multiprocessor systems,” in Fault-
Tolerant Computing. FTCS-20., June 1990, pp. 82–88.

[9] K.L. Wu, W.K. Fuchs, and J.H. Patel, “Error recovery
in shared memory multiprocessors using private caches,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 1, no. 2, pp. 231–240, April 1990.

[10] Michel Banâtre, Alain Gefflaut, Philippe Joubert, Pe-
ter A. Lee, and Christine Morin, “An architecture for
tolerating processor failures in shared-memory multipro-
cessors,” Tech. Rep. 1965, INRIA, March 1993.

[11] Michel Banâtre, Alain Gefflaut, Philippe Joubert, Chris-
tine Morin, and Peter A. Lee, “An architecture for tol-
erating processor failures in shared-memory multiproces-
sors,” IEEE Transactions on Computers, vol. 45, no. 10,
pp. 1101–1115, October 1996.

[12] Dwight Sunada, Michael Flynn, and David Glasco, “Mul-
tiprocessor architecture using an audit trail for fault tol-
erance,” in Twenty-Ninth Annual International Sympo-
sium on Fault-Tolerant Computing, June 1999, pp. 40–
47.

[13] Milos Prvulovic, Zheng Zhang, and Josep Torrellas, “Re-
Vive: Cost-effective architectural support for rollback,”
in 29th Annual International Symposium on Computer
Architecture, May 2002, pp. 111–122.

[14] Daniel J. Sorin, Milo M.K. Martin, Mark D. Hill, and
David A. Wood, “SafetyNet: Improving the availabil-
ity of shared memory multiprocessors with global check-
point/recovery,” in 29th Annual International Sympo-
sium on Computer Architecture, May 2002, pp. 123–134.

[15] Milo M.K. Martin, Mark D. Hill, and David A. Wood,
“Token coherence: A new framework for shared-memory
multiprocessors,” IEEE Micro, vol. 23, no. 6, pp. 108–
116, November/December 2003.


