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Abstract—Server consolidation is commonly used today to
make the most out of all the cores of a chip multiprocessor
by running several virtual machines (VMs) on it. Cache
coherence protocols can be adapted to take advantage of such
an scenario. In this line, Virtual Hierarchies (VHs) use two
levels of cache coherence in a consolidated server. They isolate
the coherence actions of each VM and improve performance
by maximizing the number of memory accesses serviced by
caches within the VM. In this paper we show how hierarchical
protocols with no single ordering point for the requests, such
as VHs in the form currently proposed, are prone to deadlocks.
Besides, when memory deduplication is used, VHs cannot take
advantage of memory deduplication at the cache level, both
because deduplicated data is reduplicated in cache, and because
accesses to deduplicated data often require the access to the
cache tiles used by a different VM by means of broadcast.
We analyze all these problems and we propose solutions for
them, showing the actual performance of these protocols, and
giving some insights for the future development of coherence
protocols optimized for server consolidation.

I. INTRODUCTION

Nowadays, the number of processor cores in mainstream
computers is increasing. In particular, chip multiprocessors
(CMPs) are commonly used in servers. To take advantage of
these circumstances, server consolidation is commonly used
to run several services in a single server, usually by means of
running several virtual machines (VMs) on a single physical
machine.

On the other hand, current cache coherence protocols do
not scale well with the number of cores. Directory-based and
token-based protocols [1] are the most promising solutions
to keep the cache coherence in such machines, but these
protocols show a number of problems as the number of
processors grows. Traditional directory protocols add an
extra level of indirection when solving a cache miss. The
average distance that the messages must travel due to this
indirection grows with the number of processors in the
CMP. On the other hand, token protocols usually rely on
broadcast to solve requests, which leads to contention in
the interconnection network, and this effect becomes more
important as the number of processors grows.

Recently, new coherence protocols have been proposed
to address these problems [2, 3]. In particular, Virtual
Hierarchies (VHs) [3] focuses on supporting a consolidated
environment. Two different two-level coherence protocols

(named V HA and V HB) that adapt to the VMs running in
the server are presented.

The first level (intra-VM level) of these protocols handles
most of the coherence actions, and the second level (inter-
VM level) is only used for inter-VM sharing and dynamic
reallocation of resources to the VMs. The authors claim that
their best VH based protocol performs 12-58% better than
the best alternative flat directory protocol.

VHs were designed for scenarios in which most shar-
ing takes place within the VMs. Nevertheless, they are
prepared to support memory deduplication [4], which is
a very common technique in consolidated servers and the
main source of interference among VMs. However, their
performance when using memory deduplication has not yet
been evaluated. This is one of our main purposes.

The simplest example of deduplicated memory is that of
the code of the operating system. Using deduplication, if
16 VMs execute their own instance of Solaris 10, a single
copy of the code would be present in memory thanks to
the action of the hypervisor. Nevertheless, the code of other
applications and data is often also deduplicated. Details on
the deduplication process can be found on Section V.

We have reimplemented the proposed VH protocols as
described in [3] and [5] and we have found that the imple-
mentation of the protocols becomes unexpectedly complex
to be able to properly support data sharing among VMs. In
particular, V HB , as described in [3] and [5] is not deadlock-
free. Moreover, when deduplication is used, the performance
of these protocols is very close to that of a flat directory
protocol, due to some extra management for shared blocks
that must be carried out.

In this paper we analyze these protocols and their prob-
lems, and propose solutions for fixing them. In order to
prevent deadlocks, we designed a solution based on time-
outs. We also elaborate on the token counting mechanism
used by V HB and fix some of its drawbacks. We also
demonstrate that, when deduplication is used, the benefits
of these protocols in terms of performance are reduced.

The rest of the paper is organized as follows. Section
II gives some background on VHs. Section III shows the
deadlock problems found on the implementation of the V HB

protocol, and describes the solution that we have designed
to prevent them. In Section IV, other features of V HB
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such as token management and private data optimization
are discussed. Section V presents the new features that we
have added to our simulator in order to model deduplication
in a consolidated server. In Section VI we show the tests
performed and their results. Finally, our conclusions can be
found in Section VII.

II. BACKGROUND

Next we discuss the base architecture used, the intra-VM
level of the VH protocols, and the two different inter-VM
levels of the protocols, that is, V HA and V HB .
Base Architecture: We focus on tiled-CMPs with a
directory-based coherence protocol. This kind of chip is
built by replicating basic constructing blocks containing a
processor, an L1 cache, an L2 cache bank and a network
interface. The L2 cache in the chip is shared among all
tiles. Each memory block is mapped to its home L2 bank
by using some bits in its address. When a block is present
in any cache on the chip, its home L2 stores its directory
information. When an L1 miss occurs, a request is sent
to the home L2 bank. There is no need to keep directory
information in memory.

L1 and L2 caches are non-inclusive. The directory infor-
mation in L2 is stored in a different structure than the data
blocks. Both structures have the same number of sets, but
the associativity is bigger for the directory. When a block is
evicted from its home L2 bank, the directory information
remains. When a directory entry is evicted, the block is
also evicted (if present), and every copy of the block is
invalidated.
Virtual Hierarchy Intra-VM Protocol: The intra-VM pro-
tocol of the hierarchy, which is common for both V HA and
V HB , is used to minimize the average L2 access latency. In
order to do this, each VM is given a share of the L2 cache of
the chip, preferably the nearest banks to the cores executing
the VM. This reduces the distance that the misses need to
travel due to the indirection introduced by the directory,
which is located in the L2 banks belonging to the VM. This
also isolates the coherence actions of each VM at this level
of the protocol.

In order to find the home L2 for a block, every L1 cache
has a dynamic table, mapped by some bits of the address of
the block, storing the address-to-home-L2 correspondence.
The table has as many entries as there are tiles in the
chip (for the case when there is a single VM running in
all the tiles or there is no virtualization at all). The L2
banks belonging to the VM are interspersed in the table.
Reconfiguration of resources is possible by changing the
contents of the table.
VHA Inter-VM Protocol: This second level of the protocol
keeps the coherence among VMs. When an L1 miss cannot
be solved by the home L2, a request is sent from the home
L2 to the directory in memory. Notice that, contrary to the
base architecture explained before, directory information in

memory is needed. A directory entry must be able to point
to any subset of the L2 banks in the chip since, due to the
possible reallocation of resources, any L2 can be the home
L2 for any block.

In terms of performance, V HA is equivalent to giving a
private L2 cache to each VM. The advantage that it provides
is the flexibility to reallocate the resources thanks to the
dynamic home tile tables.
VHB Inter-VM Protocol: V HB is different from V HA

since it uses a broadcast-based second level protocol and
mixes directory and token coherence. This allows the re-
duction of the directory information in memory to a single
bit per block that indicates whether the memory holds the
block and all the tokens for that block or not. When a
request cannot be satisfied by the intra-VM level and comes
to the inter-VM level, if the bit is active, then memory can
directly answer the request by sending the data and all the
tokens. Otherwise, a broadcast message that reaches every
L1 and L2 cache is sent. Only the caches holding tokens
have to answer that message in order to satisfy the request.
Two versions of V HB protocol have been proposed. They
differ in whether broadcasts can bypass the L2 directory [3]
or must be handled by it before reaching L1 caches [5].
The second alternative is not affected by all the deadlock
scenarios, as we will see in Section III. On the other hand,
the first alternative offers better performance since bypassing
the L2 directory avoids one hop when solving inter-VM
misses.

The L2-bypassing broadcast mechanism is supposed to
simplify the protocol since many transient states in the L2
directory are no longer needed as every inter-VM request
reaches every cache, and the token counting rules avoid
any coherence violations. Additionally, the directory in L2
is inexact (because the broadcast messages bypass the L2
directory and therefore it no longer needs to hold precise
information about the sharers). All of this allows several
optimizations like local replacements for private data and
directory victimization without invalidating the copies of the
block.

Although the paper by Marty et al. [3] states for simplicity
that the first level coherence protocol is the same in V HA

and V HB , the use of broadcast and tokens in V HB implies
important changes in both levels of the protocol. First, since
V HB uses tokens, we need to keep the token count for the
data in the cache. Second, the token counting rules force the
L1s to hold at least one token to be able to access the data.
In some cases, this prevents the home L2 from sending the
data to the L1 requestor, at the intra-VM level, due to lack
of enough tokens.

Further details on these protocols (V HA and V HB) can
be found in [3] and [5].
A. V HB and Token Coherence

Token-based and directory-based coherence mechanisms
have already been successfully combined in a single pro-
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tocol [6]. Therefore, it is reasonable to wonder whether
V HB , which uses token counting in addition to the directory
information, is also a token-based protocol with a correct-
ness substrate that would prevent any deadlock or starvation
situations. However, its authors explicitly claim that unlike
token coherence, V HB does not require persistent requests
to maintain liveness in the system [5]. Actually, they only
use token counting to enable the reduction of directory
information in memory to a single bit per block and allow
tiles without tokens to avoid answering broadcast requests.

If the full correctness substrate of a token protocol were
used, none of the problems that we have detected in V HB’s
operation would be applicable. This way, V HB would
become nothing but a performance policy [7] for token
coherence, and the resulting protocol would present higher
hardware overhead due to the additional structures needed
by the correctness substrate of token protocols. Additionally,
the interactions between the token substrate and the directory
information used by the protocol would need to be defined,
like the actions that should be performed on the directory
information when persistent requests need to be issued (for
example, flushing that information).

In Section IV-A we discuss our approach to the token
management in V HB .

We find our dissertation on deadlock problems necessary
as these are the problems that, in general, may arise in a
hierarchical protocol with no single ordering point. Addi-
tionally, we present modifications to ensure the correctness
of V HB in Section III-B.

III. V HB PROBLEMS CAUSING DEADLOCKS

In this section, we present a number of scenarios where
the original design of V HB would fail. This way, we show
that the protocol, as described in [3] and [5], does not
have the property of correctness and some modifications or
additional mechanisms are needed.

We have analyzed V HA and V HB , and we have found
that there are two root problems with the behavior of
V HB . The first problem is caused because invalidations
sent (by broadcast) by the global directory do not wait for
an acknowledgement. Hence, they can be delayed by the
interconnection network and arrive after the original request
has been satisfied. This means that they can arrive virtually
at any time, hence they can interfere with later requests
in unpredictable ways. The second problem, which is only
present in the faster version of V HB [3], is that there is no
ordering enforced between inter-VM requests and intra-VM
requests. This allows an intra-VM request to interfere with
an inter-VM request (and conversely), making it fail.

A. Deadlock Scenarios

The first deadlock scenario is caused by the lack of ac-
knowledgement to broadcast messages. When the directory
broadcasts a request for a cache block, only the tiles that
hold tokens for that block answer the request. When the

request is solved, some of the broadcast request messages
may have not reached its destination yet (e.g. they may
have been delayed in the interconnection network). We call
them delayed request messages. When a new write request
is broadcast by the directory, some delayed messages from
previous write requests may still be present in the network.
Therefore, the broadcast messages from the current write
request may not collect all the tokens since delayed request
messages can “steal” some of the tokens. If the L1 cache
that originated the delayed request messages has also issued
a new write request, it will accept the tokens that its delayed
request messages managed to collect. In this scenario, no L1
cache is able collect all the tokens and no write request can
be completed.

Additionally, some other related minor issues were de-
tected while implementing V HB . For example, delayed
request messages can also unintentionally solve a new cache
miss. For this reason, a blocked L2 or the directory can
receive an unblock message corresponding to a different
request than the one they are serving. The protocol must deal
carefully with this (the unblock message cannot be ruled out
nor processed) or new deadlock scenarios can occur.

The second problem shows up when no ordering point
between inter-VM and intra-VM requests is forced [3],
therefore allowing the protocol to solve inter-VM requests
with one less hop. Next we describe one example of an inter-
VM request preventing an intra-VM request from succeed-
ing, and then one example of an intra-VM request interfering
with an inter-VM request.

In the example of Figure 1, L1a, L1b and L2 are assigned
to VM0. AnotherVM represents a different VM that sends a
request via the directory and gets the corresponding answer.

Let us suppose that one L1 holds all the tokens (L1b),
and a different L1 in the same VM (L1a) issues a GetX
(1). This request reaches the L2 and then is forwarded
to L1b (2) because it is an intra-VM request. Before this
forwarded GetX reaches L1b, an inter-VM request originated
in a different VM is broadcast by the directory and reaches
L1b (3). In response to the inter-VM request, L1b, which
holds all the tokens, sends the data and a token to the other
VM (4). When the intra-VM request reaches L1b (2), the
response (5) contains all the tokens minus one. Hence, L1a
will lack a token even after receiving the answer from L1b
(5). There is no mechanism described in [3] to prevent such
a simple case of deadlock.

In the same manner, an intra-VM read request can obtain
a single token, preventing an inter-VM write request from
collecting all of the tokens. Figure 2 depicts this situation.
The broadcast messages sent by the directory (1, 2) cannot
find the token that is sent from L2 to L1 (3, 4, 5) as a result
of a read request. Therefore, the write request forwarded by
the directory is never solved since it lacks one token.

Unfortunately, the absence of an ordering point among
local and global requests creates so many different race
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Cache States
L2
ILX Block is not present, but local exclusive exists in the VM
IFX Blocked, forwarded local request to local exclusive
L1
NP Block is not present (or was invalidated)
IS Issued GetS
IM Issued GetX
OM Waiting for tokens in order to write the block
E Block is in exclusive state
S Block is in shared state
Message Description
GetX Write request
GetS Read request
DataSh Response message containing data and a token
DataOw Response message containing data and every token but one

L1a L2 L1b anotherVM

ISNP EILX

NP →IM
store

NP →IS
load

ILX →IFX
1. GetX

E →O
3. GetS

O →NP

2. GetX

IS →S

4. DataSh

IM →OM
5. DataOw

This request
is never solved

Figure 1. Deadlock. An inter-VM request makes an intra-VM request fail

Cache States
L2
S The L2 holds the block and a token
SS A load request is being served
ILS Block is not present, but local sharer exists in the VM
L1
NP Block is not present (or was invalidated)
IS Issued GetS
O Owner
OM Waiting for tokens in order to write the block
S Block is in shared state
Message Description
GetX Write request
GetS Read request
Unblock Unblock to L2
DataSh Response message containing data and a token

anotherVM L2 L1

NPS (1 token)O →OM
store

All tokens
minus one

NP →IS
load

S →SS
3. GetS

IS →S
4. DataSh

SS →ILS
5. Unblock

NP →NP
1. GetX

ILS →NP

2. G
etX

Deadlock

Holding a
token needed

by anotherVM

Figure 2. Deadlock. An intra-VM request makes an inter-VM request fail

conditions (we can find examples as complex as we want)
that they cannot be considered in the protocol on a case-by-
case basis.

Since both versions of V HB [3, 5] present deadlock sce-
narios, we have decided to implement a simple and generic
timeout mechanism, valid for either version of V HB , to
detect these potential deadlocks where a request cannot be
solved. For evaluation purposes, we have chosen the faster
version of V HB [3], since the avoidance of a hop when
solving inter-VM requests is very beneficial when memory
deduplication is on.

B. Our Solution to Deadlocks

In order to prevent deadlocks, we have designed a timeout
mechanism that consists of timers placed in each L2 cache
bank and in the directory in memory and that can trigger
persistent requests in some very infrequent situations.

Each time the directory broadcasts a request it blocks and
sets a timer. If the request timeouts before the directory is
unblocked, then the directory rebroadcasts the request and
resets the timer.

The timeouts in L2 are meant to turn intra-VM requests
into inter-VM requests by sending them to the directory.
Each time the L2 receives a request and tries to solve it
inside the VM, a timer is set for the request. When the
request timeouts, it is sent to the directory, becoming an
inter-VM request. Hence, a request in the L2 can only
timeout once. After that, the directory will always solve the
request. We empirically determined a 3000-cycle threshold

for the timeouts. The main characteristics of the timeout
mechanism are summarized in Table I.

With this, we force an ordering point in the directory
for requests that cannot be successfully completed by the
protocol’s regular operation. However, the broadcasts sent by
the directory can always fail unpredictably due to successful
intra-VM requests. For example, there is a risk of starvation
when a block is in exclusive state in a VM. This block can
travel from one L1 cache to another inside the VM over
and over again, due to intra-VM requests. The broadcasts of
an inter-VM request would be useless if they always reach
the caches in an inadequate order (an order that we cannot
control). Although this is extremely unlikely, the L1 that
issued the inter-VM request would suffer from starvation.

To account for such an infrequent situation in which a
inter-VM request is never satisfied, we can afford to use
a drastic mechanism which consists of using a persistent
request, like those used in the banked arbitration scheme of
token-based protocols [8], after a number of retries for the
request have been performed. We fix one memory controller
as the only arbiter in the chip, and, different to current token
coherence implementations, we allow only a single persistent
request active at a time in the chip. This scheme scales well
because only a single register in each cache is needed to
store the address of the block that caused the only active
persistent request, regardless of the number of processors in
the chip. The situation that activates a persistent request is so
infrequent that it has never taken place in our simulations of
consolidated workloads. Therefore, contention is not a real
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Table I. TIMEOUT MECHANISM

Timer Location Event that activates a timer Event that deactivates a timer Timeout effect The timer is activated again after a timeout
L2 Cache The L2 tries to solve an intra-VM

request.
An unblock message for the request reaches the
L2.

The request is forwarded to the directory (it
becomes an inter-VM request).

No.

Directory A broadcast is sent to solve an inter-
VM request.

An unblock message for the request reaches the
directory.

The request is rebroadcast. Yes.

Directory A broadcast is sent to find a cache to
send writebacked tokens to.

A message from a cache that can accept tokens
arrives.

The find message is rebroadcast. Yes.

problem despite having a single arbiter and allowing a single
persistent request.

IV. CLARIFYING OTHER FEATURES OF V HB

A. Token counting

When a protocol uses tokens, whose number is limited (so
that all elements can have at least one token simultaneously),
a mechanism is needed to ensure that every read request
eventually gets at least one token and that every write
request eventually gets all of them. In the latter case, V HB

tries to ensure it by blocking the directory and sending
a broadcast message that reaches every possible holder of
tokens, although, as seen in Figure 2, it does not actually
ensure it. However, for a read request, there is no mechanism
described to ensure that the requestor will eventually get a
token. Moreover, there is no definition about who sends the
token needed by a read request. The cache holding the owner
token is a good candidate for this task, and we use it in our
implementation.

In order to keep the protocol simple, the owner cache
should be careful not to run out of regular tokens, or we
would be forced to implement some mechanisms to collect
tokens which would increase the complexity of the protocol
(like persistent requests do in other token based protocols).

The simplest way to avoid this problem consists of making
the cache holding the owner token send a single token to
each read request. Contrary to V HA, where once an L1 is
a sharer every read request can be satisfied inside the VM,
load requests in V HB need a token, and if no writebacked
tokens exist in the home L2 for that VM, the request must
reach the cache holding the owner token. This increases the
average latency of this kind of requests.

Additionally, the original authors [5] propose a token
coalescing mechanism to deal with L2 writebacks since
the directory has only one bit to encode token information.
When the directory receives a writeback from L2, it broad-
casts a FIND message that is answered by the caches that
hold tokens. After receiving the answers, the directory sends
the tokens to one of those caches. This can lead the L1 cache
holding the owner token to run out of regular tokens, since
other caches in the system can hold more than one token
each.

Moreover, when the directory sends the owner token to
an L1 as a consequence of a writeback from an L2, the
home L2 for that L1 is not informed unless mechanisms
such as hints are used. Hence, an L2 must expect new kinds
of block replacements from L1 apart from the ones that

can be expected based on the (now incomplete) directory
information.

In order to keep the protocol simple, we use a different
approach. In our version, when some tokens are writebacked
to the directory, the FIND message that the directory sends
is answered only by the L1 holding the owner token. If the
owner token is also writebacked to the directory, then the
directory issues a different type of FIND message which is
answered by any cache that holds tokens. In the latter case,
the cache that receives the tokens becomes the owner.

In addition, under some circumstances (like a concurrent
writeback that contains the owner token to L2 cache), no
cache might answer the FIND message. Hence, we extend
the original mechanism with timeouts to rebroadcast the
FIND messages. After a number of unsuccessful retries,
the persistent request described in Section III-B is issued
to force all tokens to be sent to the directory.

With respect to the simplicity, due to all the problems
with V HB explained so far (inexact directory, deadlocks,
broadcasts that bypass the L2, token counting problems),
every cache can receive almost any type of message at any
time while being in any state, making the number of possible
transitions of the protocol increase dramatically. This makes
reasoning about the protocol difficult, and it is contrary to the
statement of its authors that V HB is a simple protocol since
many transient states disappear. This also makes possible for
a cache to receive an unexpected message containing tokens.
When such a thing happens, we forward the tokens to the
directory.

B. Private Data Optimization

The private data optimization used in V HB , which some-
times provides a great performance improvement [3], has
several problems. There are two main concerns: unsuccessful
private data retrieval and finding private data. We explain
them next.
Private data retrieval: The private data optimization tries
to improve performance by bringing the private data to the
L2 of the tile that the L1 which is using that data belongs to.
This implies that the home L2 does not know the location
of such data. When a core wants to access one block and
the L1 holds neither the data nor a token, then, instead of
directly accessing the home L2 for the block, the L1 tries
to recover the private data from its tile’s L2. If it succeeds,
the miss is solved without needing to go out of the L1’s tile.
If not, the request is forwarded to the home L2, resulting
in an additional hop (the one performed within the tile to
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try to recover the private data). Notice that the access to the
L1’s tile’s L2 could be performed in parallel to the access
to the home L2, avoiding the extra hop. However, if the
data were found in the L1’s tile’s L2 and the home L2 were
accessed in parallel, the home L2 and the memory directory
would block, since they would try to locate the data, and an
unnecessary message would be broadcast. This would add
extra latency to other requests that would have to wait until
the L2 and directory unblock, and would also increase the
traffic due to the extra broadcasts.

When the private data retrieval succeeds, in general, no
hops are avoided since the data would also be found in the
home L2 if the optimization were not used. Nevertheless,
this optimization reduces the latency of these misses because
the L2 where the data is found is closer than the home L2.

Unfortunately, many blocks are not private to the tile
and their information is in the home L2. In that case, this
optimization introduces an extra hop to check if private data
is available in the tile’s L2. In particular, this would happen
with deduplicated data.

The hit/miss ratio of private data retrievals affects the
performance. In Section VI we show that this ratio is very
low for many applications.
Finding Private Data: Another problem of the private data
optimization is the need to find private data held by an
L1 cache by means of broadcast, even when the access is
performed by an L1 in that same VM. This problem arises
because, when an L1 cache holds private data, the home L2
has no directory information about the data.

Without the optimization, an L1 miss would find the
information about the owner in the home L2, and would
be solved within the VM. With this optimization, this
information is not available in the home L2 and the miss
has to rely on a broadcast performed by the directory.

When both private data retrieval and finding private data
problems show at the same time, a two-hop miss in the
original V HB becomes a five-hop miss plus broadcast in
the optimized version of V HB . This increases both miss
latency and network traffic.

When private data is found by a read request and becomes
shared data the unblock message which is sent to the home
L2 contains the identity of the owner. This allows subsequent
read requests in the VM to hit in the home L2.

V. SIMULATION INFRASTRUCTURE

We use our Virtual-GEMS [9] simulator to perform our
evaluation. Virtual-GEMS is based upon GEMS [10] and
Simics [11], and simulates a consolidated server using
virtualization. To perform this work, we have added some
new features to the simulator. The main one is the ability to
simulate memory deduplication.

With deduplication, when one VM first accesses a mem-
ory page, its real address is mapped to a physical address
in memory. In this moment, the hypervisor checks whether

the new memory page is shared with some other VMs. In
order to do this check, the MD5 hash for the new page is
calculated. The contents of the page are then compared to
the ones of the pages with which it shares its hash. If there
is a match, the identical pages will share the same physical
address (and only one of the pages will be used for future
content comparisons). Otherwise, the hash is stored and the
page is mapped to a new location in physical memory. A
copy-on-write policy is used when shared pages are written.
This scheme is similar to content-based page sharing as
implemented in VMware [4], Disco [12] or the Linux kernel.

Broadcast support is needed in order to prevent V HB

from congesting the network when memory deduplication
is used. If no broadcast support exists, the network interface
of the memory controller splits each broadcast in at least
64 unicast messages to reach every L1 and L2 cache in
a 64-core CMP. All of these messages must traverse the
same first link, one at a time. Even though there are several
memory controllers in the chip (each with its own network
interface) and broadcasts are distributed among them, V HB

without broadcast support is orders of magnitude slower
than the rest of the protocols tested, and there is no use
in further analyzing its results. This also makes impractical
to use acknowledgements for broadcast requests, since this
would require at least 64 unicast messages, coming from
different sources, trying to traverse the same link to reach
their destination.

In order to use a detailed network and model the effect
of multicast and broadcast messages, we have implemented
multicast support in the Garnet [13] network simulator
included in GEMS. At the cost of extra hardware, we
provide the router microarchitecture with the ability to route
a multicast packet to several output ports. The input buffer
containing the message is set free after the message has
traversed every output link towards its destinations.

VI. EVALUATION AND RESULTS

The characteristics of the simulated system are shown in
Table II.1. We use as a base case a flat directory like the one
discussed in Section II. The benchmarks used can be seen
in Table II.2. Three different VH based protocols are tested:
V HA, V HB and V HB-opt (that is, V HB with the private
data optimization). We use a MOESI state scheme in all the
protocols.

Figure 3 and Table III summarize the results of our
experiments. In Figure 3.1, we can see that when not using
deduplication, the best performing protocol is V HB which
performs 22.6% better than the flat directory. However, the
performance of this protocol with the private data opti-
mization (V HB-opt) decreases. This is caused by the extra
broadcasts to find the private data belonging to another core
(whose effects are captured by the Garnet network), as well
as by the extra hops caused by the low hit rate of the cores
accessing to their tile’s L2 to get private data (Tables III.4,
III.5 and III.6).
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Table II. SYSTEM AND BENCHMARK CONFIGURATIONS.

II.1. System configuration
Processors 64 UltraSPARC-III+ 3 GHz. 2-ways, in-order.
L1 Cache Split I&D. Size: 64KB. Associativity: 4-ways.

64 bytes/block.
Access latency: 1 (tag) + 2 (data) cycles.

L2 Cache Size: 256KB each slice.
16MB total. Associativity: 8-ways.
64 bytes/block.
Access latency: 4 (tag) + 6 (data) cycles.

RAM 4 GB DRAM.
8 memory controllers along the borders of the chip.
Memory latency 300 cycles + on-chip delay

Page Size 4 KB
Interconnection Bidimensional mesh 8x8. 16 byte links.

Latency: 4 cycles per link.

II.2. Benchmarks
Workload Description Size Simulation
apache4x16p Web server with static contents 3000 transactions per VM Four 16-processor Apache VMs
jbb4x16p Java server 5000 transactions per VM Four 16-processor JBB VMs
barnes4x16p Simulation of gravitational forces 8192 particles Four 16-processor Barnes VMs
radix4x16p Sorting of integers 1M integers Four 16-processor Radix VMs
unstructured4x16p Computational fluid dynamics application Mesh.2K, 5 time steps Four 16-processor Unstructured VMs
LU4x16p Factorization of a dense matrix 512x512 matrix Four 16-processor LU VMs
water-nsq4x16p Molecular dynamic simulation of water 512 molecules Four 16-processor water-nsq VMs
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Fig 3.1. Deduplication is off
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Figure 3. Performance of the tested configurations.

Table III. STATISTICS OF THE SIMULATIONS.

Apache JBB Barnes Radix Unstr. LU Water average
III.1. Performance increase when deduplication is on

Dir 10.1% 19% 6.6% 3.7% 2.9% −0.8% 4.6% 6.6%
V HA −0.9% −2.3% −1% −1.3% −2.1% −3.9% −2.2% −2%
V HB −3.9% −6.1% −4.6% −4.7% −6.4% −11.6% −4.3% −5.9%
V HB-opt −4.9% −13.3% −4.2% −7.8% −7.1% −20.3% −6.2% −9.1%

III.2. Network traffic increase when deduplication is on
Dir 1.6% −8.4% 0.4% 2.8% −1.7% −1.1% −2.8% −1.4%
V HA 0.2% −10.5% 2.5% −1.1% −3% 2.6% 0.7% −1.3%
V HB 10.7% 68% 11.1% 9.4% 2% 83% 17.8% 28.9%
V HB-opt 10.3% 79.7% 14.1% 11.1% −9% 48.8% 14.9% 25.4%

III.3. Average memory saving thanks to deduplication
21.8% 50.9% 13.8% 15% 20.5% 33% 28.4% 26.2%

III.4. L1 misses that required a broadcast (no deduplication)
V HB 1.9% 1.1% 5.6% 2.32% 0.9% 0.3% 3.2% 2.2%
V HB-opt 6.1% 1.9% 6.5% 13.8% 1.2% 6.7% 6.7% 6.3%

III.5. L1 misses that required a broadcast (deduplication)
V HB 4.1% 26.8% 6.9% 4.4% 1.4% 20.5% 6.7% 10.1%
V HB-opt 8.3% 26.8% 7.8% 16.7% 1.5% 24.5% 10.3% 13.7%

III.6. V HB-opt L1 misses that found private data
No Dedupl 8.3% 16.2% 3.4% 18.1% 1.2% 4.9% 7.1% 8.4%
Dedupl 7.3% 7.4% 1.6% 16.7% 0.9% 1.3% 3.7% 5.6%

On the other hand, when deduplication is used, the
performance advantage of VH based protocols gets reduced
(Figure 3.1). V HB is still the protocol with the best perfor-
mance, but now it is only 8.7% faster on average than the
flat directory. V HB-opt performs even worse than the flat
directory in most benchmarks due to the problems noted
in Section IV-B. Table III.6 shows the low hit rate of

private data retrievals. This is the most likely scenario in
a consolidated server.

The main reason for this is that Dir performance im-
proves 6.6% thanks to the L2 savings provided by the
deduplication of data (the L2 miss rate of Dir decreases
an average 9% when deduplication is used). Since VH
protocols duplicate the deduplicated data again in L2, their
performances do not improve (their L2 miss rate remains the
same); and since the use of the inter-VM level of the protocol
is needed to access shared data, the performance of V HA

and V HB actually decreases. This is especially noticeable in
the V HB case, whose performance is significantly affected
by the broadcasts needed to locate shared data (see the
contrast between Tables III.4 and III.5).

Despite the support for multicast added to the network,
which is needed only by V HB and V HB-opt, the network
usage of this protocol is noticeably higher when deduplica-
tion is used, due to the frequent broadcasts (Table III.2).

Our tests also show how a very small percentage of
the intra-VM requests of V HB timeout and must be for-
warded to the directory in order for them to complete.
An even smaller percentage of the requests needs to be
rebroadcast. This only happens when deduplication is used.
It does not noticeably affect performance, but shows how
the mechanisms that we have added are actually needed for
correctness.
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VII. CONCLUSIONS

Server consolidation is an increasingly important tech-
nique to make the most out of the new architectures that
provide a high number of processors. The idea of adapting
cache coherence protocols to the needs of server consolida-
tion is very compelling.

The first proposal in this direction was VHs [3]. Our tests
confirm the statement from the original authors that their
protocols perform considerably better than a flat directory
coherence protocol, but only as long as each VM is totally
isolated and the inter-VM protocol is barely used.

However, a commonly used technique in consolidated
environments is memory deduplication. We show that, when
memory deduplication is used, the performance of a flat
directory protocol improves 6.6% due to the L2 cache
space savings provided by the deduplicated data. On the
contrary, VH based protocols cannot take advantage of this
circumstance since deduplicated data is replicated again in
L2 cache. This way, the performance of the flat directory
approaches that of VHs. Moreover, the most innovative
proposed protocol, V HB , needs broadcast support in order
to avoid congesting the network when using deduplication.

Furthermore, V HB needs additional mechanisms not de-
scribed in the original proposal to ensure correctness, since
the mixing of directory-based and token-based coherence,
and the absence of acknowledgements and serialization
points for the broadcast requests make the protocol prone to
deadlock. Our solution for this is to use a carefully designed
mechanism to manage the tokens and to use a timeout
mechanism to reissue requests. For the rare scenarios in
which a request can suffer from starvation we propose a
single persistent request mechanism.

Additionally, we show that the private data optimization
proposed for V HB is not always beneficial, and it causes
performance degradation for some applications due to the
small hit rate shown and the extra broadcasts needed to
locate private data.

All of this reduces the attractiveness of VHs. Nevertheless,
the path started by VHs looks very promising, and the
drawbacks of these protocols, pointed out in this paper,
should be addressed by new proposals that adapt better to a
consolidated server environment.
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