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Abstract—It is widely accepted that transient failures will appear more frequently in chips designed in the near future due to several

factors such as the increased integration scale. On the other hand, chip multiprocessors (CMPs) that integrate several processor cores

in a single chip are nowadays the best alternative to more efficient use of the increasing number of transistors that can be placed in a

single die. Hence, it is necessary to design new techniques to deal with these faults to be able to build sufficiently reliable CMPs. In this

work, we present a coherence protocol aimed at dealing with transient failures that affect the interconnection network of a CMP, thus

assuming that the network is no longer reliable. In particular, our proposal extends a token-based cache coherence protocol so that no

data can be lost and no deadlock can occur due to any dropped message. Using the GEMS full-system simulator, we compare our

proposal against a similar protocol without fault tolerance (TOKENCMP). We show that in the absence of failures, our proposal does not

introduce overhead in terms of increased execution time over TOKENCMP. Additionally, our protocol can tolerate message loss rates

much higher than those likely to be found in the real world, without increasing the execution time by more than 15 percent.

Index Terms—Fault tolerance, cache coherence, CMP, transient failures, TOKENCMP.

Ç

1 INTRODUCTION

CHIP multiprocessors (CMPs) [3], [6] are currently
accepted as the best way to take advantage of the

increasing number of transistors available in a single chip,
since they provide better performance without excessive
power consumption, exploiting thread-level parallelism.

In many applications, high availability and reliability are

critical requirements. The use of CMPs in critical tasks can

be hindered by the increased rate of transient faults due to

the ever-decreasing feature size and higher frequencies. To

be able to design more useful CMPs, several fault-tolerant

techniques must be employed in their construction.
Moreover, the reliability of electronic components is

never perfect. Electronic components are subject to several

types of failures due to a number of sources. Failures can be

either permanent, intermittent, or transient. Permanent

failures require the replacement of the component and are

caused by electromigration among other causes. Intermittent

failures are mainly due to voltage peaks or falls.
Transient failures [14], also known as soft errors or single

event upsets, occur when a component produces an

erroneous output, and it continues working correctly after
the event. There are multiple causes of transient errors, which
include alpha-particle strikes, cosmic rays, and radiation
from radioactive atoms, which exist in trace amounts in all
materials and electrical sources like power supply noise,
electromagnetic interference (EMI), and radiation from
lightning. Any event that upsets the stored or communicated
charge can cause soft errors in the circuit output.

Transient failures are much more common than
permanent failures [19]. Currently, transient failures are
already significant for some devices like caches, where
error correction codes are used to deal with them.
However, current trends of higher integration and lower
power consumption will increase the importance of
transient failures [8]. Since the number of components in
a single chip greatly increases, it is no longer economically
feasible to assume a worst-case scenario when designing
and testing the chips. Instead, new designs will target the
common case and assume a certain rate of transient
failures. Hence, transient failures will affect more compo-
nents more frequently and will need to be handled across
all the levels of the system to avoid actual errors.

Communication between processors in a CMP is very
fine grained (at the level of cache lines); hence, small and
frequent messages are used. In order to achieve the best
possible performance, it is necessary to use low-latency
interconnections and avoid acknowledgment messages and
other control-flow messages as much as possible.

In this work, we propose a way to deal with the transient
failures that occur in the interconnection network of CMPs.
We only consider traffic due to accesses to coherent
memory and ignore for now accesses to noncoherent
memory like memory-mapped I/O. We can assume that
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these failures cause the loss of some cache coherence
messages, because either the interconnection network loses
them or the messages reach the destination node (or other
node) corrupted. Messages corrupted by a soft error will be
discarded upon reception using error detection codes. Our
proposal adds only those acknowledgments that are
absolutely needed and does so without affecting the critical
path of most operations.

We attack this problem at the cache coherence protocol
level. In particular, we assume that the interconnection
network is no longer reliable and extend the TOKENCMP
[12] cache coherence protocol to guarantee correct execution
in the presence of dropped messages. Our proposal only
modifies the coherence protocol and does not add any
requirement to the interconnection network, making it
applicable to current and future designs. We protect dirty
data with acknowledgment messages out of the critical path
of cache misses and provide a mechanism for recovering
from lost nondata messages. Since the coherence protocol is
critical for good performance and correct execution of any
workload in a CMP, it is important to have a fast and
reliable protocol. Our protocol does not add a significant
execution time overhead but adds a small network traffic
overhead (around 10 percent).

There have been several proposals for fault tolerance
targeting shared-memory multiprocessors. Most of them use
variations of checkpointing and recovery: Ahmed et al.
developed the Cache-Aided Rollback Errors Recovery
(CARER) [1], Wu et al. [22] developed error recovery
techniques using private caches for recovering from
processor transient faults in multiprocessor systems, Banâ-
tre et al. proposed the Recoverable Shared Memory (RSM),
which deals with processor failures on shared-memory
multiprocessors using snoopy protocols [2], whereas Suna-
da et al. proposed the Distributed Recoverable Shared Memory
with Logs (DRSM-L) [20]. More recently, Prvulovic et al.
presented ReVive, which performs checkpointing, logging,
and memory-based distributed parity protection with low
overhead in error-free execution and is compatible with off-
the-shelf processors, caches, and memory modules [16]. At
the same time, Sorin et al. presented SafetyNet [18], which
has similar objectives but has less overhead, requires custom
caches, and can only recover from transient faults. Several
commercial systems have been built using fault tolerance
techniques and targeting high-availability needs, like Tan-
dem (now HP) NonStop systems [4], and IBM zSeries [17], or
those offered by Stratus.

Recently, Meixner and Sorin have proposed an error
detection technique for multiprocessors [13] based on token
coherence, which can detect any coherence error but provides
no recovery mechanism. In addition, Aggarwal et al. pre-
sented a mechanism to provide dynamic reconfiguration of
CMPs, which enables fault containment in dealing with
transient errors and reconfiguration in dealing with hard
errors but does not directly address the problems caused by a
faulty interconnection network in the coherence protocol.

To the best of our knowledge, there has not been any
proposal explicitly dealing with transient faults in the
interconnection network of multiprocessors or CMPs from
the point of view of the cache coherence protocol. In
addition, most fault tolerance proposals require some kind
of checkpointing and rollback, whereas our proposal does
not require one. Our proposal could be used in conjunction

with other techniques that provide fault tolerance to
individual cores and caches in the CMP to achieve full
fault tolerance coverage inside the chip.

The main contributions of this paper are the following:
We have identified the different problems that the use of an
unreliable interconnect poses to a token-based CMP cache
coherence protocol (TOKENCMP) by the loss of messages
due to an unreliable interconnect; we have proposed
modifications to the protocol and the architecture to cope
with these problems without adding excessive overhead;
and we have implemented such solutions in a full-system
simulator to measure their effectiveness and execution time
overhead. We show that in the absence of failures, our
proposal does not introduce overhead in terms of increased
execution time over TOKENCMP. Additionally, our proto-
col can tolerate message loss rates much higher than those
likely to be found in the real world, without increasing the
execution time by more than 15 percent.

A preliminary and partial version of this paper was
presented in [5]. Here, we extend that work with a more
extensive evaluation process, including a commercial
application (the Apache benchmark) in addition to the
suite of scientific benchmarks already considered and
better adjustment of the time-outs used for detecting
faults. We also consider the out-of-order execution model.
Additionally, we have rewritten the description of the
cache coherence protocol to make comprehension easier.

The rest of this paper is organized as follows: In Section 2,
we present some background about token coherence that is
necessary to better understand the rest of this paper. In
Sections 3 and 4, we describe the problems posed by an
unreliable interconnection network to TOKENCMP and the
solutions that we propose. Section 5 presents the evaluation of
the overhead introduced by our proposal and its effectiveness
in the presence of faults. Finally, in Section 6, we summarize
the main conclusions of our work.

2 TOKEN COHERENCE BACKGROUND

Regarding the cache coherence protocol background, token
coherence [9], [10] is a framework for designing coherence
protocols whose main asset is that it decouples the
correctness substrate from several different performance
policies. This allows great flexibility, making it possible to
easily adapt the protocol for different purposes [9] since the
performance policy can be modified without worrying about
infrequent corner cases, whose correctness is guaranteed by
the correctness substrate. Token coherence protocols can
avoid both the need for a totally ordered network and the
introduction of additional indirection caused by the direc-
tory in the common case of cache-to-cache transfers.

The main observation of the token framework is that
simple token counting rules can ensure that the memory
system behaves in a coherent manner. The following Token
counting rules are introduced in [9]:

. Conservation of Tokens. Each line of shared
memory has a fixed number of T tokens associated
with it. Once the system is initialized, tokens may
not be created or destroyed. One token for each
block is the owner token. The owner token may be
either clean or dirty.
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. Write Rule. A component can write a block only if it
holds all T tokens for that block and has valid data.
After writing the block, the owner token is set to
dirty.

. Read Rule. A component can read a block only if it
holds at least one token for that block and has valid
data.

. Data Transfer Rule. If a coherence message carries a
dirty owner token, it must contain data.

. Valid-Data Bit Rule. A component sets its valid-
data bit for a block when a message arrives with data
and at least one token. A component clears the valid-
data bit when it no longer holds any tokens. The
home memory sets the valid-data bit whenever it
receives a clean owner token, even if the message
does not contain data.

. Clean Rule. Whenever the memory receives the
owner token, the memory sets the owner token to
clean.

Considering these rules, we can relate token protocols with
traditional MOESI protocols and define each of the states,
depending on the number of tokens that a processor has:

0 tokens : Invalid:
1 to T � 1 tokens; but not the owner token : Shared:
1 to T � 1 tokens; including the owner token : Owned:
T tokens; dirty bit inactive : Exclusive:
T tokens; dirty bit active : Modified:

The rules above ensure that cache coherence is maintained
but do not ensure forward progress. Token coherence avoids
starvation by issuing a persistent request whenever a
processor detects potential starvation. Persistent requests,
unlike transient requests, which are issued most of the time,
are guaranteed to eventually succeed. To ensure this, each
token protocol must define how it deals with several pending
persistent requests.

In this work, we will consider a distributed persistent
request scheme using a persistent request table at each cache
as described in [9]. Each processor will be able to activate at
most one persistent request at a time by broadcasting a
persistent read request activation or a persistent write
request activation. Once the request has been satisfied, the
processor will broadcast a persistent request deactivation.
To avoid livelock, a processor will not be able to issue a
persistent request again until all the persistent requests
issued by other processors before its last persistent request
was deactivated have also been deactivated.

Token coherence provides the framework for designing
several particular coherence protocols. The performance
policy of a token-based protocol is used to instruct the
correctness substrate to move tokens and data through the
system. To date, only a few performance policies have been
designed; among them is Token-using-broadcast (TOKENB),
which is a performance policy to achieve low-latency cache-
to-cache transfer misses, although it requires more band-
width than traditional protocols [10]. TOKENCMP [12] is a
performance policy similar to TOKENB, which targets
hierarchical multiple CMP systems. It uses a distributed
arbitration scheme for persistent requests, which are issued
after a single retry to optimize the access to contended lines.

3 PROBLEMS ARISING IN CMPs WITH AN

UNRELIABLE INTERCONNECTION NETWORK

From now on, we consider a CMP system whose inter-
connection network is not reliable due to the potential
presence of transient errors. We assume that these errors
cause the loss of messages (either an isolated message or a
burst of them) since they directly disappear from the
interconnection network or arrive to their destination
corrupted and are discarded.

Instead of detecting faults and returning to a consistent
state previous to the occurrence of the fault, our aim is to
design a coherence protocol that can guarantee the correct
semantics of program execution over an unreliable inter-
connection network without ever having to perform check-
pointing or a rollback. We do not try to address the full range
of errors that can occur in a CMP system. We only concentrate
on those errors that directly affect the interconnection
network. Hence, other mechanisms should be used to
complement our proposal to achieve full fault tolerance for
the whole CMP. Next, we present the problems caused by the
loss of messages in the TOKENCMP protocol, and later, we
show how these problems can be solved.

From the point of view of the coherence protocol, we
assume that a coherence message either correctly arrives to
its destination or does not arrive at all. In other words, we
assume that no incorrect or corrupted messages can be
processed by a node. To guarantee this, error detection
codes are used. Upon arrival, the CRC is checked using
specialized hardware, and the message is discarded if it is
wrong. To avoid any negative impact on performance, the
message is assumed to be correct because this is by far the
most common case, and the CRC check is done in parallel
with the initial processing of the message (like accessing the
cache tags and MSHR to check the line state).

There are several types of coherence messages that can
be lost, which translate into a different impact on the
coherence protocol. First, losing transient requests is
harmless. Note that, even when we state that losing the
message is harmless, we mean that no data loss, deadlock,
or incorrect execution would be caused, although some
performance degradation may happen.

Since invalidations (which can either be persistent or
transient requests) in the base protocol require acknowl-
edgment (the caches holding the tokens must respond to the
requester), losing a message cannot lead to incoherence.

Losing any other type of message, however, may lead to
a deadlock or data loss. Particularly, losing coherence
messages containing one or more tokens would lead to a
deadlock, because the total number of tokens in the whole
system must remain constant to ensure correctness. More
precisely, if the number of tokens decreases because a
message carrying one or more tokens does not reach its
destination, no processor will be able to write to that line of
memory anymore.

The same thing happens when a message carrying data
and tokens is lost, as long as it does not carry the owner
token. No data loss can happen because there is always a
valid copy of the data at the cache that has the owner token.

Another different case occurs if the lost coherence message
contains a dirty owner token, since it must also carry the
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memory line. Hence, if the owner token is lost, no processor
(or memory module) would send the data, and a deadlock
and, possibly, data loss would occur. In the TOKENCMP
protocol, like in most cache coherence protocols, the data in
the memory is not updated on each write, but only when it is
evicted from the owner cache. In addition, the rules
governing the owner token ensure that there is always at
least a valid copy of the memory line that travels along with it
every time the owner token is transmitted. Thus, losing a
message carrying the owner token means that it is possible to
totally lose the data.

Finally, while a persistent request is in process, we also
have to deal with errors in the persistent request messages.
Losing a persistent request or persistent request deactivation
would create inconsistencies among the persistent request
tables at each cache in a distributed arbitration scheme,
which would also lead to deadlock situations.

The most obvious solution to the problems depicted
above is to ensure that no message is lost while traveling
through the interconnection network by means of reliable
end-to-end message delivery using acknowledgment
messages and sequence numbers in a way similar to
TCP [15]. However, this solution has several drawbacks:

. Adding acknowledgments to every message would
increase the latency of cache misses, since a cache
would not be able to send a message to another
cache until it has received the acknowledgment for
the previous message.

. That solution would significantly increase network
traffic. The number of messages would be at least
doubled (one acknowledgment for each message).

. Extra message buffers would be needed to store the
messages until an acknowledgment is received in
case they need to be resent.

4 A FAULT-TOLERANT TOKEN COHERENCE

PROTOCOL

Instead of ensuring reliable end-to-end message delivery,
we have extended the TOKENCMP protocol with fault
tolerance measures. To do this, we have added the
following states to the traditional MOESI states1 used by
the non-fault-tolerant protocol:

. Backup (B). This state is similar to the Invalid state,
but the data line is kept in the cache to be used for
recovery by the token recreation process if necessary. A
line will enter a Backup state when the ownership
needs to be transferred to a different cache (that is,
when leaving the Modified, Owned, or Exclusive
state) and will abandon it and become invalid once
an ownership acknowledgment message is received.

. Blocked ownership (Mb, Eb, and Ob). To prevent
having more than one backup for a line at any given
point in time, a cache that receives the owner token
(entering the Modified, Exclusive, or Owned state)
will avoid transmitting the owner to another cache
until it receives a backup deletion acknowledgment

message. To achieve this, we have added blocked
versions of the Modified, Exclusive, and Owned
states. While a line is in one of these states, the cache
will ignore external requests to write to that line.
Persistent requests will be attended just after
receiving the backup deletion acknowledgment message.

. Recreating tokens (R). A line will enter this state
when a fault is detected, and a token recreation process
is requested.

The main principle that has guided the protocol
development has been to prevent adding significant over-
head to the fault-free case and to keep the flexibility of
choosing any particular performance policy. Therefore, we
should try to avoid modifying the usual behavior of
transient requests. For example, we should avoid placing
point-to-point acknowledgments in the critical path as
much as possible.

Once a problematic situation has been detected, the main
recovery mechanism used by our protocol is the token
recreation process described later. That process resolves a
deadlock, ensuring both that there is a correct number of
tokens and one and only one valid copy of the data.

As shown in Section 3, only the messages carrying
transient read/write requests can be lost without nega-
tive consequences. For the rest of the cases, losing a
message results in a problematic situation. However, all
of these cases have something in common that leads to a
deadlock. Hence, a possible way to detect faults is by
using time-outs for transactions. We use four time-outs
for detecting message losses: the “lost token time-out” (see
Section 4.1), the “lost data time-out,” the “lost backup
deletion acknowledgment time-out” (see Section 4.2), and the
“lost persistent deactivation time-out” (see Section 4.3.2).
Notice that all these time-outs, along with the usual retry
time-out of the token protocol (except the lost persistent
deactivation time-out), can be implemented using just one
hardware counter, since they do not need to be
simultaneously activated. For the lost persistent deactiva-
tion time-out, an additional counter per processor at each
cache or memory module is required. A summary of the
time-outs used by our proposal can be found in Table 1.

Since the time to complete a transaction cannot be
reliably bounded with a reasonable time-out due to the
interaction with other requests and the possibility of
network congestion, our fault detection mechanism may
produce false positives, although this should be very
infrequent. Hence, we must ensure that our corrective
measures are safe, even if no fault really occurred.

In Table 2, we present a summary of all the problems that
can arise due to loss of messages and their proposed
solutions. In the rest of this section, we explain in detail how
our proposal prevents or solves each one of these situations.

4.1 Dealing with Token Loss

When a processor tries to write to a memory line that
has lost a token, it will eventually lead to a time-out and
issue a persistent request. In the end, after the persistent
request is activated, all the available tokens in the whole
system for the memory line will be received by the
starving cache. In addition, if the owner token was not
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lost and is not blocked (see Section 4.2), the cache will
also receive it, together with the data. However, since the
cache will not receive all the tokens, it will not be able to
complete the write miss, and finally, the processor will
be deadlocked.

We use the “lost token time-out” to detect this deadlock
situation. It will start when a persistent request is activated
and will stop once the miss is satisfied or the persistent
request is deactivated. The value of the time-out should be
long enough so that, in normal circumstances, every transac-
tion will be finished before triggering this time-out.2

Hence, if the starving cache fails to acquire the necessary
tokens within a certain time after the persistent request has
been activated, the lost token time-out will be triggered. In
that case, we will assume that some token-carrying message
has been lost, and we will request a token recreation process
for recovery to the memory module. This process will also
take care of false positives of the lost token time-out, which
could lead to an increase in the total number of tokens and
to coherence violations by means of the token serial number
(see Section 4.4). Notice that the lost token time-out may be
triggered for the same coherence transaction that loses the
message or for a subsequent transaction for the same line.
Once the token recreation has been done, the miss can be
immediately satisfied.

4.2 Avoiding Data Loss

To avoid losing data in our fault-tolerant coherence protocol,
a cache (or memory controller) that has to send the owner
token will keep the data line in a backup state. A line in a
backup state will not be evicted from the cache until an
ownership acknowledgment is received, even if every token is
sent to other caches. This acknowledgment is sent by every
cache in response to a message carrying the owner token.
While a line is in a backup state, its data is considered invalid
and will be used only if required for recovery. Hence, the
cache will not be able to read from that line.3 Likewise, when a
line enters a backup state, the lost data time-out will start and
will stop once the backup state is abandoned.

A cache line in a backup state will be used for recovery if
no valid copy is available when a message carrying the
owner token is lost. To be able to do this in an effective way,
it is necessary to ensure that there is a valid copy of the data
or one and only one backup copy at all times, or both.4

Hence, a cache that has received the owner token recently
cannot transmit it again until it is sure that the backup copy
for that line has been deleted. In this situation, the line
enters the blocked ownership state. A line will leave this state
when the cache receives a backup deletion acknowledgment,
which is sent by any cache when it deletes a backup copy
after receiving an ownership acknowledgment. Fig. 1 shows an
example of how the owner token is transmitted with our
protocol.

The two acknowledgments necessary to finalize this
transaction are out of the critical path of the miss. However,
there is a period after receiving the owner token until the
backup deletion acknowledgment arrives, during which a cache
cannot answer to write requests because it would have to
transmit the owner token, which is blocked. This blocking
also affects persistent requests, which are immediately
serviced after receiving the backup deletion acknowledgment.
This blocked period could increase the latency of some
cache-to-cache transfer misses; however, we have found
that it does not have any impact on performance, as most
writes are sufficiently separated in time.

This mechanism also affects replacements (from L1 to
L2 and from L2 to memory), since the replacement
cannot be performed until an ownership acknowledgment is
received. We have found that the effect on replacements
is much more harmful for performance than the effect on
cache-to-cache transfer misses mentioned above.

To alleviate the effect of the blocked period in the latency
of replacements, we propose using a small backup buffer to
store the backup copies. In particular, we add a backup buffer
to each L1 cache. A line is moved to the backup buffer when it
is in a backup state, when it needs to be replaced, and when
there is enough room in the backup buffer.5 The backup
buffer acts as a small victim cache, except that only lines in
backup states are moved to it. We have found that a small
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2. Using a value too short for any of the time-outs used to detect faults
would lead to many false positives, which would hurt performance.

3. It is possible for a cache to receive valid data and a token before
abandoning a backup state, only if the data message was not lost. In that
case, it will be able to read from that line, since it will be transitioned to an
intermediate backup and valid state until the ownership acknowledgment is
received.

4. Having more than one backup copy would make recovery impossible,
since it could not be known which backup copy is the most recent one.

5. We do not move the line to the backup buffer immediately after it
enters a backup state to avoid wasting energy in many cases and avoid
wasting backup buffer space unnecessarily.

TABLE 1
Time-Outs Summary



backup buffer with just one or two entries is enough to
practically remove the negative effect of backup states (see
Section 5.2). Alternatively, a write-back buffer could achieve
the same effect.

4.2.1 Handling the Loss of an Owned Data-Carrying

Message or an Ownership Acknowledgment

Losing a message that carries the owner token means that
there is a possibility that the only valid copy of the data is
lost. However, there is still an up-to-date backup copy at the
cache that sent the data-carrying message. Since the data-
carrying message does not arrive at its destination, no
corresponding ownership acknowledgment will be received by
the cache, and the lost data time-out will be triggered.

If an ownership acknowledgment is lost, the backup copy
will not be discarded, and no backup deletion acknowledgment
will be sent. Hence, the backup copy will remain in one of the
caches, and the data will remain blocked in the other.
Eventually, either the lost data time-out or the lost backup
deletion acknowledgment time-out will also be triggered.

When either time-out is triggered, the cache requests a
token recreation process to recover the fault (see Section 4.4).
The process can solve both situations: If the ownership
acknowledgment was lost, the memory controller will send
the data that had arrived at the other cache; if the data-
carrying message was lost, the cache will use the backup copy
as valid data after the recreation process ensures that all the
other copies have been invalidated.

4.2.2 Handling the Loss of a Backup Deletion

Acknowledgment

When a backup deletion acknowledgment is lost, a line will stay in
a blocked ownership state. This will prevent it from being
replaced or from answering any write request. Both condi-
tions would lead to a deadlock if they are not resolved.

If a miss cannot be resolved because the line is blocked in
some other cache waiting for a backup deletion acknowl-
edgment that has been lost, eventually, a persistent request
will be activated for it, and after some time, the lost token

time-out will be triggered. Hence, the token recreation process
will be used to solve this case.

To be able to replace a line in a blocked state when the
backup deletion acknowledgment is lost, we use the lost backup
deletion acknowledgment time-out. It is activated when the
replacement is necessary and deactivated when the backup
deletion acknowledgment arrives. If it is triggered, a token
recreation process will be requested.

The token recreation process will solve the fault in both
cases, since even lines in blocked states are invalidated and
must transfer their data to the memory controller.

4.3 Dealing with Errors in Persistent Requests

Assuming a distributed arbitration policy, persistent
request messages (both requests and deactivations) are
always broadcasted to keep the persistent request tables
at each cache synchronized. Losing one of these messages
will lead to an inconsistency among the different tables.

If the persistent request tables are inconsistent, some
persistent requests may not be activated by some caches or
some persistent requests may indefinitely be kept activated.
These situations could lead to starvation.

4.3.1 Dealing with the Loss of a Persistent Request

First, it is important to note that the cache that issues the
persistent request will always eventually activate it, since
no message is involved to update its own persistent request
table.

If a cache holding at least one token for the requested
line that is necessary to satisfy the miss does not receive
the persistent request, it will not activate it in its local
table and will not send the tokens and data to the starver.
Hence, the miss will not be resolved, and the starver will
be deadlocked.

Since the persistent request has been activated at the
starver cache, the lost token time-out will eventually be
triggered, and the token recreation process will also solve
this case.

On the other hand, if the cache that does not receive the
persistent request did not have tokens necessary to satisfy
the miss, it will eventually receive an unexpected deactiva-
tion message that should be ignored.

FERN�ANDEZ-PASCUAL ET AL.: EXTENDING THE TOKENCMP CACHE COHERENCE PROTOCOL FOR LOW OVERHEAD... 1049

TABLE 2
Summary of the Problems Caused by Loss of Messages

Fig. 1. Transition diagram for the states and events involved in data loss
avoidance and message interchange example. Cache C1 broadcasts a
transient exclusive request (GetX). C2, which has all the tokens and,
hence, is in a modified state (M), answers to C1 with a message (DataO)
carrying the data and all the tokens, including the owner token. Since C2
needs to send the owner token, it goes to the backup state (B) and starts
the lost data time-out. When C1 receives the DataO message, it
satisfies the miss and enters the modified and blocked state (Mb),
sending an ownership acknowledgment to C2. When C2 receives it, it
discards the backup, goes to the invalid state (I), stops the lost data
time-out, and sends a backup deletion acknowledgment to C1. Once C1
receives it, it transitions to the normal modified state.



4.3.2 Dealing with the Loss of a Deactivation Message

If a persistent request deactivation message is lost, the request
will be permanently activated at some caches. To avoid this,
caches will start the lost persistent deactivation time-out when a
persistent request is activated and will stop it when it is
deactivated. When this time-out is triggered, the cache will
send a persistent request ping to the starver. A cache receiving a
persistent request ping will answer with a persistent request or
persistent request deactivation message whether it has a
pending persistent request for that line or not, respectively.
The lost persistent deactivation time-out is restarted after
sending the persistent request ping to cope with the potential
loss of this message.

If the cache receives a persistent request from the same
starver before the lost persistent deactivation time-out is
triggered, it should assume that the deactivation message
has been lost and has deactivated the old request, because
caches can have only one pending persistent request.

4.4 Token Recreation Process

The token recreation is the main fault recovery mechanism
provided by our proposal. This process needs to be effective,
but since it should happen very infrequently, it does not need
to be particularly efficient. In order to avoid any race and keep
the process simple, the memory controller will serialize the
token recreation process, attending token recreation requests
for the same line in FIFO order.

The process works as long as there is at least a valid copy
of the data in some cache or one and only one backup copy
of the data, or both (the valid data or backup can also be at
the memory). The protocol guarantees that these conditions
are true at every moment, despite any message loss.6 If
there is at least a valid copy of the data, it will be used for
the recovery. Otherwise, the backup copy can be used for
recovery.

At the end of the process, there will be one and only one
copy of the data with all the tokens (recreating any token
that may have been lost) at the cache that requested the
token recreation process.

There is one exception to this when the data was actually
lost (hence, no valid copy of it exists, only a backup copy)
and the token recreation process was requested by a cache
other than the one that holds the backup copy. In this case,
the token recreation process will fail to recreate the tokens, but
the cache that holds the backup copy will eventually
request another token recreation process (because its lost
data time-out will be triggered), and this new process will
succeed using its backup copy to recover the data.

When recreating tokens, we must ensure the Conservation
of Tokens invariant presented in Section 2. In particular, if
the number of tokens increases, a processor would be able
to write to the memory line while other caches hold
readable copies of the line, violating the memory coherence
model. Thus, to avoid increasing the total number of tokens
for a memory line even in the case of a false positive, we
need to ensure that all the old tokens are discarded after the
recreation process. To achieve this, we define a token serial

number that is conceptually associated with each token and
each memory line.

All the valid tokens of the same memory line should
have the same serial number. The serial number will be

transmitted within every coherence response. Every cache
in the system must know the current serial number
associated with each memory line and should discard
every message received containing an incorrect serial

number. The token recreation process modifies the current
token serial number associated with a line to ensure that all
the old tokens are discarded. Hence, if there was no real

failure but a token-carrying message was delayed on the
network due to congestion (a false positive), it will be
discarded when received by any cache because the token

serial number will not match.
To store the token serial number of each line, we propose

a small associative table present at each cache. Only lines
with an associated serial number different than zero must
keep an entry in that table. The overhead of the token serial

number is small. In the first place, we will need to increase
it very infrequently; thus, a counter with a small number of
bits should be enough (we use a two-bit wrapping counter).
Second, most memory lines will keep the initial serial

number unchanged; thus, we only need to store those that
have changed it and assume the initial value for the rest.
Third, the comparisons required to check the validity of
received messages can be done out of the critical path of

cache misses.
Since the token serial number table is finite, serial numbers

are reset using the owner token recreation mechanism
whenever the table is full and a new entry is needed,

because resetting a token serial number actually frees up its
entry in the table.

Additionally, when a token serial number needs to be
reset (either to replace it from the token serial number table
or because it has reached the maximum value and needs to

be incremented), the interconnect should be drained and
the line flushed from all caches to ensure that no old token
remains in the network.

The information of the tables must be identical in all the

caches, except while it is being updated by the token
recreation process. The process works as follows:

When a cache decides that it is necessary to start a token

recreation process, it sends a recreate tokens request to the

memory controller responsible for that line. The memory
can also decide to start a token recreation process, in which
case, no message needs to be sent. The memory will queue
token recreation requests for the same line and service them

in order of arrival.
When servicing a token recreation request, the memory

will increase the token serial number associated to the line
and send a set token serial number message to every cache.

When receiving that message, each cache updates the

token serial number, destroys any token that it could have,
and sends an acknowledgment to the memory. The
acknowledgment will also include the data if the cache
had valid data (even if it was in a blocked owner state).

Since all the tokens held by a cache are destroyed, the
state of the line will become invalid, even if the line was in a
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6. In particular, these conditions are true if no message has been lost;
hence, the token recreation process is safe for false positives and can be
requested at any moment.



blocked owner state. However, if the line was held in a

backup state, it will remain in that way.
If the memory controller receives an acknowledgment

with data, it will send a backup invalidate message to all the

caches. When receiving that request, the caches will send an

acknowledgment and discard its backup copy. This avoids

having two backup copies when several faults occur, and

two or more backup recreation processes are requested in

quick succession.
Once the memory receives all the acknowledgments

(including the acknowledgments for the backup invalidation

if it has been requested), it will send a destruction done

message to the cache that initiated the recreation process

(unless it is the memory itself). The destruction done message

will include the data if it was received by the memory or the

memory had a valid copy itself; otherwise, it means that

there was no valid copy of the data, and there must be a

backup copy in some cache (most likely in the same cache

that requested the token recreation).
When a cache receives a destruction done message with

data, it will recreate all the tokens (with the new token serial

number) and, hence, set its state to modified. If the destruction

done message came without data and the cache was in a

backup state, it will use the backup data and recreate the

tokens anyway. If the destruction done message came

without data and the cache did not have a backup copy, it

will not be able to recreate the tokens; instead, it will restart

the usual time-outs for the cache miss. As mentioned above,

when this last case happens, there must be a backup copy in

another cache, and the lost data time-out of that cache will

eventually be triggered and recover from this fault. Fig. 2

shows an example of the token recreation process at work.

4.4.1 Handling Faults in the Token Recreation Process

Since the efficiency of the token recreation process is not

a great concern, we can use unsophisticated (brute force)

methods to avoid problems due to losing the messages

involved. Hence, all of these messages are repeatedly sent

every certain number of cycles (1,000 in our current

implementation) until an acknowledgment is received.

Serial numbers are used to detect and ignore duplicates

unnecessarily sent.

4.5 Hardware Overhead of Our Proposal

First, to implement the token serial number table, we have

added a small associative table at each cache and at the

memory controller to store those serial numbers whose

value is not zero. In this work, we have assumed that each

serial number requires two bits (if the tokens of any line

need to be recreated more than four times, the counter will

wrap) and that 16 entries per processor are sufficient (if

more than 16 different lines need to be stored in the table,

the least recently modified entry will be chosen for eviction

using the token recreation process to reset the serial

number).
Most of the time-outs employed to detect faults can be

implemented using the same hardware already employed

to implement the starvation time-out required by token

coherence protocols, although the counters may need more

bits since the new time-outs are longer. For the lost persistent

deactivation time-out, it is necessary to add a new counter per

processor at each cache and at the memory controller.
In addition, some hardware is needed to calculate and

check the error detection code used to detect and discard

corrupt messages.
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Fig. 2. Transition diagram for the states and events involved in the token recreation process (used in this case to recover from the loss of an
ownership acknowledgment). In a transaction like that in Fig. 1, the ownership acknowledgment is lost. Hence, C2 keeps the line in a backup state
(B). After some time, the lost data time-out is triggered (LDto), and C2 sends a token recreation request message (TrR) to the memory controller and
enters the backup and recreating state. The memory controller sends a set token serial number message (TrS) to each cache. C2 and C3 receive
this message and answer with an acknowledgment (TrSAck) without changing their states, since they are either in an invalid or a backup state. On
the other hand, C1 is in a modified and blocked state; hence, it returns an acknowledgment with data (TrSAck þ Data) and changes its state to
invalid (I). When the memory receives the acknowledgment with data, it sends a backup invalidate message to each cache. C1 and C3 answer with
an acknowledgment (BInvAck) without changing their states, while C2 discards its backup data (which could be invalid since C1 may have already
written to the cache line), sets its state to invalid and recreating (Ir), and answers with an acknowledgment as well. When the memory receives all the
acknowledgments, it sends a destruction done message to C2, including the new data (TrDone þ Data). Finally, C2 receives the new data and sets
its state to modified (M).



Our protocol also uses two additional virtual channels
with respect to TOKENCMP. One of the channels is used for
sending ownership acknowledgment and the other for
backup deletion acknowledgment messages. These virtual
channels are also used for sending the messages involved in
the token recreation process.

Finally, to avoid performance penalty in replacements
due to the blocked ownership period, we have proposed to
add a small backup buffer at each L1 cache. A backup
buffer with just one entry can be effective, as will be shown
in Section 5.2.

5 EVALUATION

5.1 Methodology

We have evaluated the performance of our proposal using
full-system simulation. We have used the Virtutech Simics [7]
functional simulator with the Multifacet GEMS [11] timing
infrastructure. GEMS can model both in-order and out-of-
order processors using Opal.

We have simulated two likely design points for future
CMP systems: a 4-way CMP system with out-of-order cores
and a 16-way CMP system with in-order cores. Both
configurations are designed as an array of replicated tiles
connected over a point-to-point switched network. As shown
in Fig. 3, each tile contains a processor, private L1 data and
instruction caches, and part of the shared L2 cache. We
estimate that the two configurations would require a
comparable number of transistors.

Using out-of-order execution does not affect the correct-
ness of the protocol at all and does not have an important
effect in the overhead introduced by the fault tolerance
measures compared to the non-fault-tolerant protocol.

We have implemented the proposed fault-tolerant
coherence protocol using the detailed memory model
provided by GEMS simulator (Ruby) to evaluate its over-
head compared to the TOKENCMP [12] protocol and to
check its effectiveness when dealing with message losses.
TOKENCMP is a token-based coherence protocol without
fault tolerance provision, but has been optimized for
performance in CMPs.

The most relevant configuration parameters of the
modeled systems are shown in Table 3. In particular, the
values chosen for the fault-detection time-outs have been
experimentally fixed to minimize the performance degrada-
tion in the presence of faults while avoiding false positives
that would reduce performance in the fault-free case. Using
even shorter time-out values would only moderately reduce

the performance degradation in the presence of faults but
would significantly increase the risk of false positives.

Finally, all the simulations have been conducted using
several scientific programs and the Apache HTTP server.
Barnes, Cholesky, FFT, Ocean, Radix, Raytrace, Water-NSQ,
and Water-SP are from the SPLASH-2 [21] benchmark suite.
Tomcatv is a parallel version of a SPEC benchmark, and
Unstructured is a computational fluid dynamics application.
The experimental results reported here correspond to the
parallel phase of each program only. In the case of Apache, we
use version 2.2.4 serving static web pages of different sizes.
Table 4 shows the input sizes used in the simulations. We
have performed several simulations with different random
seeds for each benchmark to account for the variability of
multithreaded execution; this variability is represented by the
error bars in the figures, which enclose the resulting
95 percent confidence interval of the results.

5.2 Measuring the Overhead for the Fault-Free Case

First, we evaluate both execution time overhead and
network overhead of our protocol when no messages are
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Fig. 3. Diagram of an individual tile.

TABLE 3
Characteristics of Simulated Architectures

TABLE 4
Benchmarks and Input Sizes Used in the Simulations



lost. As previously explained, the execution time overhead
depends on the size of the backup buffer (see Section 4.2).
Fig. 4 plots the execution time overhead using different
sizes for the backup buffer, including the case of not having
a backup buffer at all.

As derived in Fig. 4, without a backup buffer, the overhead
in terms of execution time is more than 5 percent, on the
average, for the four-core CMP and more than 20 percent for
some benchmarks, which we think is not acceptable. The
results for 16-core CMPs are also similar. We have found that
this slowdown is due to the increased latency of the misses
that need a replacement of an owned line first, since the
replacement is no longer immediate but has to wait until an
ownership acknowledgment is received from the L2 cache.

Fortunately, the use of a very small backup buffer is
enough to avoid nearly all this penalty. In the four-core CMP,
a backup buffer of just one entry cuts down the penalty to less
than 2 percent, on the average. Likewise, for the 16-core
architecture, the slowdown using one entry in the backup
buffer is less than 1 percent.

The other potential source of miss latency overhead in our
protocol is due to the fact that a cache holding a line in a
blocked owner state cannot respond to write requests (not
even persistent write requests). The blocked time lasts while
the ownership acknowledgment travels to the previous owner
and until the backup deletion acknowledgment reaches the new

owner. The results shown in Fig. 4 suggest that the effect of
this overhead in the total execution time is negligible, since
the writes that different cores perform on the same line are
usually sufficiently separated in time, and the new owner can
progress its execution as soon as the data is received.

On the other hand, Fig. 5 shows the network overhead
measured as a relative increase in bytes transmitted through
the network for the same benchmarks and configurations
employed above. As shown in our previous work [5], where
we simulated a four-way in-order CMP, the relative network
overhead slightly decreases as we increase the number of
processors (11 percent for 4 processors and 8 percent for
16 processors, on the average). The network overhead is due
to the acknowledgments used to guarantee the correct
transmission of the owner token and its associated data. On
the average, we have found a 10 percent network overhead
that represents the cost of extending the TOKENCMP protocol
with fault tolerance properties.

5.3 Measuring the Supported Fault Tolerance Ratio

We have shown that our protocol introduces negligible
overhead in the average execution time and slight network
overhead. On the other hand, our proposal is capable of
guaranteeing the correct execution of a multithreaded
workload on a CMP, even in the presence of transient
faults. However, the failures and the necessary recovery
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Fig. 4. Execution time overhead of our proposal compared to

TOKENCMP for several backup buffer sizes.

Fig. 5. Network traffic overhead of our protocol compared to

TOKENCMP.



introduce a certain overhead that we would want to keep as
small as possible.

Fig. 6 shows the execution time overhead of the protocol
using a backup buffer with one entry under several
message loss rates. Failure rates are expressed in number
of messages lost per million of messages that travel through
each switch in the network. These failure rates are much
higher than realistic failure rates; hence, these tests
overstress the fault tolerance provisions of the protocol.
Obviously, the base TOKENCMP protocol (or any pre-
viously proposed cache coherence protocol) would not be
able to correctly execute any of these tests.

As we can see, our proposal can support failure rates of up
to 2,000 messages lost per million with an average degrada-
tion of 12 percent in the execution time in a four-core CMP. In a
16-core system, the same loss rate yields an 8 percent average
slowdown. Hence, our protocol can support a message loss
rate of up to 2,000 messages per million without increasing the
execution time by more than 12 percent. As expected, higher
failure rates create a higher slowdown in the execution, but
the fault tolerance measures of the protocol still allow the
program to complete correctly, confirming the robustness of
such measures. The slowdown depends almost linearly on
the failure rate. Additionally, the extent of this slowdown is
very sensitive to the values of the time-outs used to detect
message losses. In particular, in our previous work [5], we
used very different and much higher time-out values (6,777-

20,000 cycles instead of 1,000-2,000) in order to avoid false
positives as much as possible. Using those time-outs, the
performance degradation in the presence of faults was much
higher due to the increased latency to detect a fault and start a
recovery process. The new shorter values used for this paper
have been experimentally determined so that the false
positive rate remains almost zero (hence, the overhead in
the absence of faults is almost the same), but the performance
degradation in the presence of faults is much lower.

6 CONCLUSIONS

The rate of transient failures in near-future chips will increase
due to a number of factors like the increased scale of
integration, the lower voltages used, and the changes in the
design process. This will create problems for CMPs, and new
techniques will be required to avoid errors. One important
source of problems will be faults in the interconnection
network used to communicate between the cores, the caches,
and the memory. In this work, we have shown which
problems appear in a CMP system with a token-based cache
coherence protocol when the interconnection network is
subject to transient failures, and we have proposed a new
cache coherence protocol (which is an extension of the
already proposed TOKENCMP [12]) aimed at dealing with
those faults, ensuring correct execution of programs while
introducing very small overhead. The main recovery
mechanism introduced by our protocol is the token recreation
process, which takes a cache line to a valid state and ensures
forward progress after a fault is detected.

We have implemented our protocol using a full-system
simulator, and we have presented the results, comparing this
protocol with the original version of TOKENCMP, which does
not support any fault tolerance but is tuned for performance
in CMPs. We have shown that, in the fault-free scenario, the
overhead introduced by our proposal is between 5 percent
and 20 percent when no backup buffer is used, and that using
a backup buffer able to store just one cache line in each L1
cache is enough to reduce it to almost insignificant levels for 4-
and 16-way CMPs.

We have checked that our proposal is capable of
supporting message loss rates of up to 2,000 messages lost
per million without increasing the execution time by more
than 15 percent. The message loss rates used for our tests
are several orders of magnitude higher than the rates
expected in the real world; hence, under real-world
circumstances, no important slowdown should be ob-
served, even in the presence of transient failures in the
interconnection network.

The main cost of our proposal is a 10 percent increase in
network traffic due to some extra acknowledgment mes-
sages. The hardware overhead required to provide the fault
tolerance is minimal: just a small associative table at each
cache to store the token serial number, some extra counters at
each cache, and a very small backup buffer at each L1 cache.

This way, our protocol provides a solution to transient
failures in the interconnection network with very low
overhead, which can easily be combined with other fault
tolerance measures to achieve full-system fault tolerance in
future CMPs.
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Fig. 6. Execution time overhead under several message loss rates.



Although this work extends a token coherence-based

protocol, the same ideas could be applied to other types of

protocols. In fact, we are designing a directory-based fault-

tolerant protocol for CMPs with similar characteristics to

the one presented in this paper.
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