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Abstract

In the search for new paradigms to simplify multi-
threaded programming, Transactional Memory (TM) is
currently being advocated as a promising alternative to
deadlock-prone lock-based synchronization. In this way,
future many-core CMP architectures may need to provide
hardware support for TM. On the other hand, power dis-
sipation constitutes a first class consideration in multicore
processor designs. In this work, we propose Dynamic Seri-
alization (DS) as a new technique to improve energy con-
sumption without degrading performance in applications
with conflicting transactions. Our proposal, which is imple-
mented on top of a hardware transactional memory system
with an eager conflict management policy, detects and seri-
alizes conflicting transactions dynamically. Particularly, in
case of conflict one transaction is allowed to continue whilst
the rest are completely stalled. Once the executing transac-
tion has finished it wakes up several of the stalling transac-
tions. This brings important benefits in terms of energy con-
sumption due to the reduction in the amount of wasted work
that DS implies. Results for a 16-core CMP show that Dy-
namic Serialization obtains reductions of 10% on average
in energy consumption (more than 20% in high contention
scenarios) without affecting, on average, execution time.

1 Introduction and motivation

Transactional Memory (TM) is currently considered as

a promising parallel programming paradigm. TM borrows

the concept of transaction from the database world and

brings it into the shared-memory programming model [7].

A TM system can be implemented in either software, hard-

ware, or as a combination of both. The common denomi-

nator in all implementations is that transactions are specu-

latively executed which hides from programmers the main
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pathologies associated with locks, such as priority inver-

sion, convoying and deadlocks. As a consequence, pro-

grammers are armed with an intuitive synchronization ab-

straction that can greatly help to simplify the development

of multithreaded programs.

Hardware transactional memory systems (HTM) are usu-

ally classified in terms of how they tackle with data ver-

sion management (VM) and conflict detection (CD). In this

work we focus our attention on the extensively used Eager-
Eager systems. On eagerly-versioned systems, updates are

done in place, i.e. transactional stores overwrite old values

residing in cache memory after storing them in an undo log.

With eager CD, dependency violations are checked on the

fly for each transactional load and store.

On the other hand, in the design of new systems, the im-

plications of energy consumption are increasingly impor-

tant, requiring tradeoffs against performance. This is true

not only for embedded systems [4] (such as mobile devices)

but also for server and even desktop systems [1]. HTM lit-

erature has mostly focused on improving performance, sim-

plicity [2] or even flexibility [17]. A recent study [5] has

compared the two predominant HTM approaches (Eager-
Eager and Lazy-Lazy) in terms of their performance and en-

ergy consumption, concluding that there is significant room

for improvement when considering energy consumption in

Eager-Eager approaches. The main reason for this is that

Eager-Eager approaches perform poorly in high-contention

scenarios [5]. Unfortunately, these scenarios may not be

rare in some future applications.

In this work we present Dynamic Serialization (DS

henceforth), a new technique aimed at reducing energy

consumption in HTM systems implementing eager conflict

management. Instead of continuously re-trying a memory

access that caused a conflict with another active transac-

tion (as done in Eager-Eager systems [18]), the offending

transaction is completely stalled entering into a low power

mode that saves energy and bandwidth. Once the offended

transaction has completed its execution, it wakes the stalled

transaction up. The stalled transaction can still abort if an-
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other transaction conflicts with it, but a priori wasted work

would have already been avoided. In this way, an Eager
system with DS would be able to manage conflicts more ef-

ficiently in a high-contention scenario, obtaining significant

reductions in terms of energy consumption and, in some

cases, execution time. The latter is due to the fact that in

these situations DS would also facilitate forward progress.

As an example, typical critical sections in transactional ap-

plications include modifying an iterator over a list. The se-

quence of addresses would be as follows:

Read A — Read B — Read C — Write C

This sequence in a high-contention scenario (i.e. sev-

eral transactions trying to execute the sequence at the same

time) implies that when a transaction reaches the last opera-

tion (Write C), the rest of executing transactions could have

already read address C. This leads to a conflict. Eventually

only the highest priority transaction will commit but expe-

riencing a significant delay and aborting other transactions

(which results in wasted work). The competition will start

again after restarting transactions’ execution. This behavior

is produced in a cycle. In this case forward progress is com-

promised. Situations of this kind are found in intruder, for

example, a benchmark of the STAMP suite [13]. With DS,

after the conflict is detected, transactions would be executed

in turn. In particular, just one of the conflicting transactions

would be allowed to continue execution. Once this transac-

tion commits, it would signal another transaction to resume

execution beyond the conflicting point.

Serialization has already been considered in two previ-

ous works ( [14], [4]). In particular, Moreshet [14] pro-

posed a naive static serialization mechanism in which two

conflicting transactions are re-issued in serialized mode,

preventing parallel speculation in other aborting transac-

tions. On the other hand, serialization in [4] consists of

stopping non-serialized cores until the commit of the seri-

alized one, with the subsequent performance penalization.

In this way, and compared with these two proposals, DS

brings the following two advantages. First, transactions can

still make progress from the beginning of their execution

until the presence of a conflict. A transaction will not be

serialized if it is not necessary. Second, DS favors parallel

speculation as much as possible since serialization is per-

formed at lower level (cache line).

The rest of the paper is organized as follows. Section 2

contains an in-depth description of the proposed DS tech-

nique. In Section 3, we detail the configuration of the simu-

lation environment and the workloads used to evaluate DS.

Performance, energy consumption and network traffic fig-

ures are analyzed in Section 4. Finally, conclusions are

given in Section 6.

2 Dynamic Serialization (DS)

Dynamic Serialization (DS) refines the conflict manage-

ment mechanism of Eager-Eager HTM systems in order to

reduce the wasted energy due to aborted and even stalled

transactions. Our implementation is based on LogTM-

SE [18] but it is extensible to any other Eager-Eager HTM

system that employs the cache-coherent protocol to detect

conflicts on the fly. DS does not change the default behav-

ior of LogTM-SE in absence of conflicts. However, unlike

other serialization mechanisms [4, 14], DS serializes trans-

actions when a conflict arises and not just after there have

already been some aborts. DS operates at cache line level

so that transactions run smoothly until a conflict in a par-

ticular cache block is detected. In such a situation, DS

serializes the conflicting transactions by guaranteeing for-

ward progress of one transaction and stalling the others in a

low-power state. Once the winner transaction has finished,

it wakes up the highest-priority transaction among all the

stalled transactions. In this way, DS not only minimizes

the energy consumption of the stalled transactions but also

lessens the number of aborted transactions thus reducing the

wasted energy due to them. To do so, DS requires the hard-

ware support detailed in Section 2.1 to implement the pro-

tocol exemplified in Section 2.2.

2.1 Architecture

In LogTM-SE, all transactions make progress by storing

new values directly in the memory location of the variable

(or “in place”), while preserving old values “on the side”

during its execution and making the changes visible during

commit. When a transaction detects a conflicting remote

request thanks to the cache coherence protocol, it responds

with a negative acknowledgment (NACK), indicating that

the requester transaction must stall its execution until the

offended transaction releases isolation over the requested

data upon commit/abort. Thereafter, the offending transac-

tion keeps retrying until the commit/abort of the offended

transaction, thus wasting a variable amount of energy that

depends on the level of contention.

On the contrary, DS avoids this persistent retrying pro-

cess by stalling the offending transaction after receiving a

NACK in a low-power state. In this state, the offending

transaction will not try to get access to the conflicting cache

block again without prior notification from another trans-

action. During that period, the offending transaction will

not generate any cache coherence message, but it will have

to process incoming cache coherence requests from other

transactions. Moreover, it must keep track of all NACKed

transactions in order to wake up the highest-priority one at

commit/abort time. To accomplish this task, every trans-

action has a hardware structure called Serialization Table

(ST) with one valid entry per each different cache block ad-
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Figure 1. Serialization Table.

dress that was NACKed by the transaction. Experiments

conducted in Section 4 have shown that only 6 entries are

enough to prevent overflow situations. Figure 1 shows the

ST structure whose fields are the following:

– Address: cache block address that has been NACKed.

– C1 (Core 1): core which runs the NACKed transaction

that requests Address with the a priori highest priority

(single threaded core).

– PriC1: priority level of C1 (timestamp of C1).1

– C2 (Core 2): core which runs the NACKed transaction

that also requested Address with the second highest priority.

– PriC2: priority level of C2 (timestamp of C2).

– Procs: bit vector of the NACKed cores for Address.

When a transaction receives a request that conflicts with

any of the addresses in its read or write sets, there are four

possible courses of action:

1) The cache block address of the request is present in

the ST and the offending transaction has higher priority than

C1. The transaction copies C1/PriC1 into C2/PriC2, sets the

new values for C1/PriC1 and updates the Procs field.

2) The cache block address of the request is present in the

ST and the offending transaction has higher priority than

C2. The transaction sets the new values for C2/PriC2 and

updates the Procs field.

3) The cache block address of the request is present in

the ST and the offending transaction has lower priority than

C2. The transaction just updates the Procs field.

4) The cache block address of the request is not present

in the ST. The transaction allocates a new entry in the ST

with the cache block address of the request (Address), the

identity of the requesting core (C1) and the priority of the

offending transaction (PriC1). Finally, the transaction sets

the corresponding bit in the Procs field.

2.2 Protocol

Our implementation of the DS protocol is based on the

MESI cache coherence protocol, although DS could be built

atop any other cache coherence protocol flavor with a simi-

lar behavior such as MOESI. DS does not modify the cache

coherence protocol, it only adds a single control message

called UNSTALL with the following fields (Figure 2):

1Our implementation uses the timestamps employed by LogTM-SE as

priority mechanism but any other similar method could be used.

Figure 2. UNSTALL message format.

– Address: cache block address that was NACKed by this

transaction. Address field in the ST.

– C2: C2 field in the ST.

– PriC2: PriC2 field in the ST.

– Procs: bit vector of the NACKed cores for Address.

Procs field in the ST.

At commit/abort time, a transaction scans its ST and

sends an UNSTALL message per each valid entry, that is,

per each conflicting cache block NACKed during its life-

time. The destination of the message is C1 and the message

includes the Address, C2, PriC2 and Procs fields of the ST

entry (the bit corresponding to C1 is reset). Upon recep-

tion of an UNSTALL message, a stalled transaction updates

its ST from the information carried by the UNSTALL mes-

sage and resumes execution. If there is an ST entry for the

Address of the UNSTALL message, the Procs field of the

ST entry is ORed with the Procs field of the UNSTALL

message, and the C1/PriC1 and/or C2/PriC2 fields of the ST

entry are modified following steps 1 through 3 of the pro-

cedure explained in Section 2.1. Otherwise, a new entry is

added to the ST where Address, C2, PriC2 and Procs fields

of the UNSTALL message are copied into the Address, C1,

PriC1 and Procs fields of the new ST entry. In this way,

the protocol enables transactions to build a list of stalled

transactions so that the highest priority ones are intended to

occupy the first positions. It is worth noting, though, that

transactions deal with imprecise information because trans-

actions only know the first two positions of the list in the

best case (the Procs field is unordered). Nevertheless, our

experimental results revealed that two ordered elements at

the head of the list approach the ideal case with exact infor-

mation. Finally, since highest-priority transactions are sup-

posed to populate the heads of the stalled transactions lists,

they will not abort in case of conflicts with other transac-

tions, thus guaranteeing forward progress. Figure 3 shows

and example in which DS avoids aborts and network traffic.

Figure 3(a) shows the initial state of five transactions

(T0-T4) with the STs of transactions T1 and T2 at the top.

Transactions T0 through T4 start their execution at time t0

through t4 respectively–RX means that the transaction reads

cache block address X while WY means that the transaction

writes cache block address Y–. In Figure 3(b), T1 sends a

NACK message from T0 since address D was previously

written by T1. Then, T1 adds a new entry to its ST with

Address D, and 0 and t0 as C1 and PriC1, respectively, and

sets the bit of the Procs field corresponding to T0. In the

meantime, T0 stalls so that no further retries are sent to T1

until the UNSTALL message is received. A similar scenario

due to conflicting access to address A takes place between
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(a) Step 1.

(b) Step 2.

(c) Step 3.

(d) Step 4.

Figure 3. Dynamic Serialization example.

T2 and T3. Next, in Figure 3(c), T1 serializes T2, adds a

new entry to its ST with Address C, and 2 and t1 as C1 and

PriC1, respectively, and sets the bit of the Procs field cor-

responding to T2. While stalled, T2 serializes T4 due to a

conflicting access to address A. T2 updates C2 and PriC2

with 4 and t4, respectively, because T4 has lower priority

than T3. At this point, all transactions other than T1 are

stalled. In Figure 3(d), T1 commits and scans its ST. There-

fore, it sends an UNSTALL message to T0 and T2. The

Procs fields of both messages are empty since T1 did not se-

rialize any other transactions on addresses D and C. When

T2 commits, it sends an UNSTALL message to T3 whose

Procs fields identifies T4 as an stalled transaction. Finally,

T3 commits and unstalls T4 which also commits. Note that

T3 did not send any NACK message to T4 but T3 inherited

T4 from T2.

To conclude, the DS protocol also copes with deadlock

detection. LogTM-SE implements a conservative deadlock

detection mechanism based on timestamps and a “possible

cycle bit” that it set whenever a NACK message is sent to

an older transaction. In this way, if a transaction receives a

NACK message from an older transaction and the “possible

cycle bit” is set, the transaction is enforced to abort. With

DS, a deadlock could go unnoticed because NACKed trans-

actions get stalled. To prevent this situation from happen-

ing, DS adds a second “possible cycle bit” that is set when-

ever a NACK message from an older transaction is received.

In this case, if the transaction is about to send a NACK mes-

sage to an older transaction and the second “possible cycle

bit” is set, the transaction must abort as well.

3 Evaluation Environment
In this section, we describe the evaluation environment

used in this work. We start by giving the details about

how the Eager-Eager HTM systems considered in this work

have been implemented in the simulator. Additionally, we

list the consumption models used to characterize energy

consumption. In particular, we focus on the energy con-

sumed in the on-chip memory hierarchy. Finally, we end

with a description of the benchmarks used to conduct the

simulations.

3.1 System Settings

We use a full-system execution-driven simulation based

on the Wisconsin GEMS toolset [12], in conjunction with

Virtutech Simics. We rely on the detailed timing model for

the memory subsystem provided by GEMS’s Ruby module,

with the Simics in-order processor model. Simics provides

functional correctness for the SPARC ISA and boots an un-

modified Solaris 10. We perform our experiments assuming

a tiled CMP system, as described in Table 2. Particularly,

we simulate a 16-core configuration with private L1 I&D

caches and a shared, multibanked L2 cache consisting of 16

banks of 512KB each. We have left another core aside to run

the operating system (OS) in a isolated way from the appli-

cation threads in order to avoid intrusions from the same one

in benchmarks’ execution and getting uncorrupted statistics.

The OS still takes the control of the benchmarks execution
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Parameter Value
in port 6

tech point 45

Vdd 1.0

transistor type NVT

flit width 128 (bits)

Table 1. Parameters of Orion 2.0.

when needed (i.e. during an exception). The L1 caches

maintain inclusion with the L2. The private L1 data caches

are kept coherent through an on-chip directory (at L2 cache

banks), which maintains bit-vectors of sharers (which are

included in the tags’ part of the L2 cache banks) and imple-

ments the MESI protocol. The tiles are connected through

a 2D-mesh network. Each tile contains a router where the

private L1, the slice of L2 and the memory controller are

connected to, plus the links to the neighboring tiles. In this

4x4 2D-network, each router has between 5 and 7 ports,

with an average of 6 ports per router.

To compute energy consumption in the on-chip memory

hierarchy we consider both the caches and the interconnec-

tion network. The amount of energy consumed by the in-

terconnection network has been measured based on Orion

2.0 [10]. In particular, we have extended the network sim-

ulator provided by GEMS with the consumption model in-

cluded in Orion. Table 1 shows the values of some of the

parameters assumed for the interconnection network. For

those not listed in the table, we use the default values given

in Orion. On the other hand, the energy spent in the memory

structures (L1, L2) were measured based on the consump-

tion model of CACTI 5.3 rev 174 [9]. In the case of the L2

cache, we distinguish the accesses that return cache blocks

from those that only involve the tags’ part of the L2 cache

(i.e. those that would be performed by the directory con-

troller to retrieve just the sharing information for a particu-

lar memory block). Obviously, the latter entails less energy.

The Ruby module contains an implementation of

LogTM-SE, an Eager-Eager system that uses signatures for

transactional book-keeping. We have extended the MESI

cache coherence protocol originally used by LogTM-SE in

order to support the Dynamic Serialization (DS) process de-

scribed in section 2. Our Serialization Table uses 6 entries,

more than enough to avoid any overflow situation with the

STAMP benchmarks. Finally, the undo log used in LogTM-

SE is a data structure mapped in virtual memory and thus,

its size is not limited by any hardware structure. We assume

perfect signatures to check for conflicts.

3.2 Benchmarks Settings

For the evaluation, we use five transactional benchmarks

extracted from the STAMP suite version 0.9.10 [13]. These

applications allow to stress a TM system in several ways.

To show a wide range of cases, we evaluate the benchmarks

MESI Directory-based CMP
Cores 16, simple issue, in order, non-memory IPC=1

Memory and Directory settings

L1 Cache I&D Private, 32 KB, split, 2 way, 1-cycle latency

L2 Cache Shared, 8 MB, unified 4 way, 12-cycle latency

L2 Directory Bit Vector, 6-cycle latency

Memory 4 GB, 300-cycle latency

Network settings

Topology 2D mesh

Link latency 1 cycle

Link bandwidth 16 Bytes/cycle

Table 2. System Parameters.

Benchmark Input
Bayes -v32 -r4096 -n2 -p20 -i2 -e2

Intruder -a10 -l16 -n4096 -s1

-i random-n16384-d24-c16

Labyrinth -i random-x32-y32-z3-n96

Vacation -n4 -q60 -u90 -r1048576 -t4096

Yada -a10 -i ttimeu10000.2

Table 3. Workloads and inputs.
that present moderate/high contention and/or large read and

write set sizes and, at the same time, their transactional exe-

cution time represents more than 70% of the total execution

time. Table 3 describes the benchmarks and the values of

the input parameters used in this work.

4 Evaluation

In this section, we present the results obtained for an

Eager-Eager system (particularly, LogTM-SE) with the

Dynamic Serialization technique proposed in this work

(LogTM-SE DS from here on) and the original LogTM-SE

system. We will perform a comparison in terms of execu-

tion time, energy consumption and network traffic.

4.1 Execution time results

For the five transactional benchmarks pointed out in Sec-

tion 3, Figure 4 shows the execution times that are obtained

for both LogTM-SE and LogTM-SE DS. In all cases, exe-

cution times have been normalized with respect to those ob-

tained with the LogTM-SE system. Moreover, to have clear

understanding of the results Figure 4 divides the execution

times into the following categories: Abort (time spent dur-

ing aborts), Back-off (explained next), Barrier (time spent

in barriers), Commit (1 cycle), Non xact (time spent in

non-transactional execution), Stall (time waiting until an-

other transaction ends), Xact useful (useful transactional

time), Xact wasted (transactional time wasted because of

aborts). The Back-off fraction represents the time spent be-

fore restarting transactions. The use of back-offs aims to

avoid contention situations that arise when several transac-

tions are being aborted repeatedly. Its upper bound raises

according to the number of retries of the current aborting
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Figure 4. Breakdown of the execution times.

transaction. Both systems employ a hardware exponen-

tial back-off mechanism that emulates the original software

method, in order to reduce energy consumption due to in-

terferences from that kind of implementation.

As it can be derived from Figure 4, none of the sys-

tems outperforms the other for all the applications. Dy-

namic Serialization (DS) improves performance in bayes
(8%) and intruder (24%) but looses in a similar propor-

tion with labyrinth (23%). For vacation there is no notice-

able difference between the performance of LogTM-SE and

LogTM-SE DS. Below, we try to explain the differences

observed for each benchmark taking into account the break-

down of the execution times, and the characteristic data ac-

cess patterns of each application.

Bayes implements a non-deterministic algorithm what

leads to high variability results. Its main transactional char-

acteristics are moderate-high contention, long transactional

time and considerably large write sets [13] and as a conse-

quence a significant number of conflicts that are very expen-

sive in case of abort. DS favors this benchmarks from the

performance point of view because of the cost of the aborts

and the level of contention exhibited by this application.

High contention and short transactions are the main char-

acteristics of intruder. This kind of applications presents a

poor performance when compared with lazy approaches [5].

In this case the cost of aborts is less punitive but the con-

tention levels are much higher. The latter makes difficult

forward progress. Backoff, abort and xact wasted phases

represent 73% of the total execution time for the base case

of LogTM-SE (see Figure 4). In the meantime, LogTM-

SE DS reduces the number of aborts to 95000 approxi-

mately, while the base case incurs in 153000 aborts. This

leads to significant reductions in the amount of time wasted

due to aborts (xact wasted) and in the duration of the back-

off phase (backoff ). Furthermore, DS increases the num-

ber of cycles that transactions are stalled. Differently from

LogTM-SE, stalls with DS do not involve any activity.

Labyrinth is characterized by long transactional time,

large write sets and medium contention. Furthermore, its

behavior is not always the same. Labyrinth tries to find a

path in a maze (tridimensional matrix of 32 x 32 x 3) fol-
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Figure 5. Breakdown of energy consumption.

lowing a variant of Lee’s algorithm. The calculation of the

path and its addition to the global maze is performed in a

single transaction. First the global matrix is read locally.

Next a path is worked out with the local copy and finally

the path is updated to the global maze if no conflicts hap-

pen. In order to scale performance with the number of the

on-chip cores, labyrinth makes use of early-release, that is,

the isolation over the set of read addresses is released after

doing the copy with the aim of reducing conflicts (hardware

support is needed). Transactional times are so long that if

a conflict occurs at the beginning of a transaction, it will

take a lot of time to be resolved. Aborts are also very ex-

pensive for the same reason. DS increments execution time

23% because of the random task of the transactions. After

an abort, a transaction probably will find another path in the

maze what means that the previous conflict will not happen

again (the other conflicting transaction will likely still be in

execution). The probability of conflicts between paths is not

so considerable to justify the use of DS. Therefore, LogTM-

SE DS will serialize unnecessarily during long times trans-

actions that would do forward progress after a conflict.

The difference in execution time between the LogTM-SE

and LogTM-SE DS is barely 3% in yada. For this applica-

tion we have found that although DS is able to avoid some

aborts, it creates others due to the cycles between trans-

actions that appear when serialization is applied. Finally,

both systems obtain the same result in vacation because the

amount of conflicts is virtually zero.

4.2 Energy consumption results

Figure 5 shows the dynamic energy consumption of

LogTM-SE and LogTM-SE DS. As before, results have

been normalized with respect to LogTM-SE. Additionally,

we split the energy consumed into the following categories:

energy spent accessing the L1 and L2 caches (L1 and L2
respectively) and energy spent in the network routers and

links (Router and Link, respectively). The amount of energy

spent in the caches is related to the number of accesses to

each one of them, and thus with the number of aborts. More

aborts means retrying more accesses to the caches. Link
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energy is due to the average link utilization or the number

of flits per cycle that cross every link. The energy model

for the router in Orion 2 exhibits a sublinear growth with

respect to the network average load. Furthermore, energy

consumed in routers is related with the execution time too.

For most applications, LogTM-SE DS beats the base

case when energy consumption is considered. Only for

labyrinth LogTM-SE shows better results. For vacation
there are no noticeable differences between both systems

since they show identical behavior. Note that while the

average difference in performance among the two systems

was almost zero, LogTM-SE DS outperforms about 10%

LogTM-SE when energy consumption is considered.

The differences in terms of energy consumption found

in bayes (22%) and intruder (28%) are located at all levels.

The reduction of the number of aborts entails energy sav-

ings in the cache structures. In addition to this, conflicts in

DS are solved by stopping transactions and, when solved,

letting them go. Differently than LogTM-SE, DS does not

generate any network traffic while a transaction is stopped.

This is the reason why the amount of energy spent in the

links of the interconnection network in DS is smaller for all

applications. Finally, lower network utilization and execu-

tion times supposes less energy spent in the routers.

For labyrinth, both the energy spent in the L1 caches and

the number of aborts are similar for both systems. LogTM-

SE consumes more energy in the L2 cache because during

the stall phase of a transaction it is continuously retrying

the access to an specific address, which is continuously re-

jected. That not only entails much more bandwidth but also

accesses to the tags part of the L2 caches to process the re-

quest. This is true for all benchmarks too. Differences in

the energy spent in the interconnection links are expected.

On the other hand, the amount of energy consumed in the

routers is higher because of its dependency with execution

time. Only for this reason, LogTM-SE DS is 5.5% more

energy-inefficient than the standard Eager-Eager system.

Finally, although the execution time of yada is slightly

increased when DS is used, the significant reduction in

network traffic (explained in Section 4.3) that DS implies,

translates into important energy savings in the interconnec-

tion network (routers and link). At the end, LogTM-SE DS

achieves an average reduction of 10% in energy consump-

tion.

4.3 Network traffic results

Figure 6 shows the levels of traffic in the interconnection

network (measured as flit per cycle) for both LogTM-SE

and LogTM-SE DS. As before, results have been normal-

ized with respect to the obtained for LogTM-SE. In general,

LogTM-SE entails higher traffic levels than LogTM-SE DS

(approximately 41% on average). The difference in net-

work traffic is considerable in most cases except vacation.
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Figure 6. Normalized network traffic.

As already explained, transactions in this benchmark barely

conflict. The rest of the benchmarks are characterized by

exhibiting high contention and/or by the large size of their

transactions [13]. During the stall phase in LogTM-SE, in-

tensive usage of interconnection network is made, because

a transaction retries continuously the access to the corre-

sponding memory address until the owner stops sending the

NACK response, or the transaction aborts. LogTM-SE DS

not only saves that wasted work but also avoids conflicts

that can lead to an abort by stalling conflicting transactions.

5 Related Work

Transactional Memory (TM) has become a promising

parallel paradigm alternative to lock synchronization [6].

While locks suffer from deadlocks, priority inversions and

convoying, TM trusts in executing transactions in parallel.

TM can be implemented in either software [8] [16], hard-

ware [2] [18], or as a combination of both [17]. Our focus

is on hardware transactional memory (HTM).

Nowadays, the implications of energy consumption is a

first-class consideration, requiring tradeoffs against perfor-

mance. This is true not only for embedded systems [4] (such

as mobile devices) but also for server and even desktop sys-

tems [1]. TM literature has traditionally focused on improv-

ing performance, simplicity [2] or even flexibility [17]. In

the STM world, Klein et al. [11] have performed a study

about energy consumption compared with lock techniques

and at the same time propose new mechanisms to improve

this key factor. In HTM, Moreshet et al. [14] performed

an early comparison in terms of energy consumption and

performance between the lock approach and TM consider-

ing only the energy spent in the memory structures. In this

previous work, Moreshet proposed a naive static serializa-

tion mechanism in which two conflicting transaction are re-

issued in serialized mode, preventing parallel speculation

in others transactions. Ferri et al. [4] present a simple and

energy-efficient TM for embedded architectures, at the cost

of performance. One of their proposals is to perform a static

serialization of transactions. If one transaction reaches this

mode, the rest of the cores must stop its execution until the

transaction commits. This reduction in speculation and per-
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formance suits well with embedded systems, but not with

general purpose ones. In [5] two well-known HTM systems

(Eager-Eager LogTM-SE system [18] and Lazy-Lazy Scal-

able TCC system [3] [15]) are compared in terms of execu-

tion time, energy consumption and traffic network. Despite

the fact that the Lazy-Lazy system outperforms the Eager-
Eager one for the general case, LogTM-SE and other eager

approaches present a significant potential for improvement

in energy consumption.

6 Conclusions

In this work, we present Dynamic Serialization (DS), a

new technique that improves energy consumption in Hard-

ware Transactional Memory (HTM) systems that imple-

ment eager conflict management, such as LogTM-SE. DS

is aimed at dynamically serializing transactions in high-

contention scenarios. In these cases, previous works [5]

have shown that the energy efficiency of Eager-Eager sys-

tems collapses. This is because conflicts are managed ei-

ther by re-trying the memory access that caused the conflict

until it disappears or by aborting one or more transactions

(depending on the interactions among the write sets of the

transactions involved in the conflict), which results in a sig-

nificant amount of energy being wasted. On the contrary,

DS detects this kind of situations and dynamically serial-

izes only involved transactions.

We have implemented DS on top of the GEMS full-

system simulator and we have compared it against the origi-

nal LogTM-SE Eager-Eager HTM system. Results in terms

of execution time, energy consumption and network traffic

have been presented. In general, DS obtains an average re-

duction of 10% in energy consumption (up to 20% in high-

contention scenarios) at no performance cost. Furthermore,

DS is able to save about 41% of the network traffic lev-

els generated by LogTM-SE. This is because DS precludes

transactions from continuously retrying a conflicting mem-

ory access.
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