
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2013; 25:862–880
Published online 4 June 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.2866

SPECIAL ISSUE PAPER

On the design of energy-efficient hardware transactional
memory systems

E. Gaona*,†, R. Titos, J. Fernández and M. E. Acacio

CAPS Research Group, University of Murcia, Spain

SUMMARY

Transactional memory is currently being advocated as a promising alternative to lock-based synchroniza-
tion because it simplifies multithreaded programming. In this way, future many-core chip multiprocessor
architectures may need to provide hardware support for transactional memory. On the other hand, energy
consumption constitutes nowadays a first class consideration in multicore processor designs. In this work,
we characterize the performance and energy consumption of two well-known hardware transactional mem-
ory systems that employ opposite policies for data versioning and conflict management. More specifically,
we compare a LogTM-SE eager-eager system and a version of the Scalable Transactional Coherence and
Consistency lazy-lazy system that enable parallel commits. To do so, we extended the Multifacet GEMS
simulator to estimate the energy consumed in the on-chip caches according to CACTI and used the inter-
connection network energy model given by Orion 2. Results show that the energy consumption of the
eager-eager system is 38% higher in average than in the lazy-lazy case, whereas performance differences
between the two systems are 26% in average. We found that even though lazy-lazy beats eager-eager on
average, there are considerable deviations in performance depending on the particular characteristics of each
application and the settings of both systems. Finally, from this characterization, we observe that a significant
part of the energy consumed in some applications in eager-eager is spent on the back-off delay phase and
explore more energy-efficient hardware back-off mechanisms. For lazy-lazy systems, the way in which mem-
ory lines are assigned to the L2 cache banks affects the number of parallel commits in some applications,
and we study an alternative fine-grained assignment. Copyright © 2012 John Wiley & Sons, Ltd.

Received 8 June 2011; Accepted 4 April 2012

KEY WORDS: hardware transactional memory (HTM); conflict detection; version management; eager-
eager approach; lazy-lazy approach; performance; energy efficiency; aborts; commits

1. INTRODUCTION AND MOTIVATION

Over recent years, we have witnessed the replacement of single-core processors by multicore ones,
which has made parallel computing resources commonplace. Although it is expected that the num-
ber of cores will grow, reaching dozens or even hundreds of them in the next years [1], multithreaded
programming remains a challenging task, even for experienced programmers. On the other hand,
energy consumption constitutes nowadays a first class consideration in multicore processor designs,
and energy-efficient architectures are a must.

Transactional memory (TM) is currently being fostered as a promising parallel programming
paradigm, and processors implementing transactional memory support in hardware have already
been announced [2]. TM borrows the concept of transaction from the database world and brings it
into the shared-memory programming model [3]. Transactions are no more than blocks of code

*Correspondence to: Epifanio Gaona, Departamento de Ingeniería y Tecnología de Computadores, Facultad de
Informática, Campus de Espinardo s/n, 30100 Murcia, Spain.

†E-mail: fanios.gr@ditec.um.es

Copyright © 2012 John Wiley & Sons, Ltd.



DESIGN OF ENERGY-EFFICIENT HARDWARE TRANSACTIONAL MEMORY SYSTEMS 863

whose execution must satisfy the serializability and atomicity properties. Programmers simply
declare the transaction boundaries leaving the burden of how to guarantee such properties to the
underlying TM system thereafter. Next, the TM system executes the transactions in parallel, as if
they were not to perform conflicting memory accesses that could violate the serializability prop-
erty. If so, this optimistic behavior pays off over the pessimistic lock approach. Otherwise, one
of the offending transactions must be aborted. In this case, the TM must guarantee that there
are no side effects left behind by the aborted transaction to satisfy the atomicity property. In
this way, the benefits derived from transactional memory are twofold. Transactions are specula-
tively executed that hides to programmers the main pathologies associated with locking techniques,
such as priority inversion, convoying, and deadlocks. As a consequence, programmers are armed
with an intuitive synchronization abstraction that can greatly help to simplify the development of
multithreaded programs.

A TM system can be implemented in either software or hardware or as a combination of both [4].
Hardware transactional memory (HTM) systems usually work at the word or cache line level. Con-
ceptually, each transaction is associated two initially empty read and write sets that are populated
every time a transactional load or store is issued. To comply with the serializability property, both
the old values and the transactional ones must coexist until the transaction is allowed to commit. A
transaction can commit only after the HTM system can assure that there are no other running trans-
actions whose write sets collide with its read or write sets. The commit process makes the read and
write sets of the winner transaction visible to the whole system. In this general scheme, there are two
opposite ways to tackle data version management (VM) and conflict detection (CD). Eagerly ver-
sioned systems perform updates in place, that is, transactional stores overwrite old values residing in
cache memory after storing them in an undo log. In lazy version management, transactional stores
are performed aside; that is, produced values are kept on a private write buffer until the transaction is
granted permission to commit. In turn, eager conflict detection checks dependency violations on the
fly during the transaction lifetime for each transactional load and store, as opposed to lazy conflict
detection that leaves this task until the last phase of the transaction execution. In this way, HTM
systems could come in four flavors considering these different approaches to VM and CD. Table I
classifies some well-known HTM systems appeared in the literature in terms of the policies used to
deal with VM and CD.

This classification raises the question of which combination constitutes the best trade-off between
cost and performance. The answer has no clear winner because all of them pose some drawbacks.
On transaction success, eager VM is faster than lazy VM because transactional values are already
in place. On the contrary, if a transaction aborts, lazy VM is a better choice because the original
values remain unmodified in cache memory. On the other hand, whereas eager CD incurs a bigger
overhead because of the persistent checking process, lazy CD usually wastes a larger amount of
work every time a transaction aborts. The comparison gets even more complicated when energy
consumption comes into play. Note that the diverse VM and CD management policies have distinct
hardware requirements and may lead to different behaviors depending on the transaction interaction
pattern. At the end, this translates into quite different energy consumption figures depending on the
particular implementation of the HTM system and the characteristics of the workload.

Table I. TM classification.

VM

Eager Lazy

CD
Eager LogTM-SE [5] EazyHTM [6]

TokenTM [7] VTM [8], LTM [9]
Lazy � Scalable TCC [10], Bulk [11]

VM, version management; CD, conflict detection; TM, transactional memory;
TCC, Transactional Coherence and Consistency; VTM, Virtual Transactional
Memory; LTM, LargeTransactional Memory.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



864 E. GAONA ET AL.

To the best of our knowledge, even though lazy-lazy systems are considered as the the best
choice in the general case [12], no previous work can be found in the literature that performs a
direct comparison of the most popular HTM implementations, namely lazy-lazy HTM systems and
eager-eager HTM systems for general purpose systems. Ferri et al. [13] performed an analysis of
both HTM systems but only for embedded architectures. Because of the specific conditions of the
embedded domain and their inherent harder hardware constraints, their proposals strongly focus on
the energy efficiency issue at the expense of obtaining worse performance. In this work, which is an
extension of our previous work appeared in [14], we conduct a fair comparison of two well-known
HTM systems. In particular, we compare LogTM-SE [5], as an example of an eager-eager system,
with Scalable Transactional Coherence and Consistency (TCC) [15], a lazy-lazy HTM system. To
do so, we rely on well-known simulators, tools, and transactional benchmarks widely accepted by
the scientific community. In particular, we extended the GEMS simulator to estimate the energy
consumed in the on-chip caches according to CACTI and used the interconnection network energy
model given by Orion 2.0. Results show that the energy consumption of the eager-eager system is
38% higher on average than in the lazy-lazy case, whereas performance differences between the
two systems are 26% on average. We found that even though lazy-lazy beats eager-eager on aver-
age, there are considerable deviations in performance depending on the particular characteristics of
each application. Our main contribution in this work is a comprehensive analysis of both systems in
terms of performance, energy consumption, and network traffic.

On the basis of this analysis, we identify two aspects that could negatively affect energy consump-
tion in future eager-eager and lazy-lazy systems. For eager-eager systems, we found that relying on
a software back-off mechanism can drastically increase energy consumption in some cases, and we
explore the effects of two hardware back-off mechanisms. For lazy-lazy systems, the way in which
memory lines are assigned to the L2 cache banks affects the number of parallel commits in some
applications, and we study an alternative fine-grained assignment.

The rest of the article is organized as follows. We start with a profound description of the two
HTM systems targeted in this study in Section 2. Later on, in Section 3, we detail the implemen-
tation of both systems, the configuration of the simulation environment, and the workload used to
generate the results. Performance, energy consumption, and network traffic figures are analyzed in
Section 4 for the base systems. In this section, we also analyze the impact that both the election of
the back-off mechanism and the distribution of memory lines between L2 cache banks have on the
performance and energy consumption of eager-eager and lazy-lazy systems, respectively. Finally,
conclusions are given in Section 5.

2. CHARACTERIZED HARDWARE TRANSACTIONAL MEMORY SYSTEMS

This section summarizes the main characteristics of the two HTM systems evaluated in this work:
LogTM-SE [5] and Scalable TCC [10].

2.1. LogTM

LogTM [16] is a widely known eager-eager system that makes use of an eager version management,
storing new values directly in the memory location of the variable (or in place), while preserving old
values on the side. Before the completion of a write access, the hardware automatically backs up the
old value of the cache block in a per-thread undo log allocated in cacheable virtual memory. This
eager versioning policy makes commits fast, whereas aborts are slower because the system must
trap to a software handler to unroll the log to restore pretransactional state. Each undo log entry
contains the virtual address of the stored block and the block’s old value. LogTM performs eager
(or pessimistic) conflict detection leveraging the coherence protocol to detect conflicts by observing
forwarded requests and invalidations for blocks that belong to a transaction’s read and write sets.
LogTM augments each L1 cache block with a read (R) and a write (W) bit used to track the blocks
that belong to the transaction read and write sets.

When a transaction detects a conflicting remote request, it responds with a negative acknowledge-
ment (NACK), indicating that the requester transaction must stall its execution until the offended

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



DESIGN OF ENERGY-EFFICIENT HARDWARE TRANSACTIONAL MEMORY SYSTEMS 865

transaction releases isolation over the requested data upon commit/abort. The default behavior of
the requestor after receiving a NACK is to resend the same request until it obtains an (affirmative)
acknowledgment (ACK), regardless of needed retries. This scheme can result in cycles, so LogTM
uses a conservative deadlock avoidance mechanism on the basis of timestamps, always giving pri-
ority to the eldest transaction. More precisely, every time a transaction sends a NACK message to
an elder requestor (according to their timestamps) a possible cycle bit is activated. The transaction
must subsequently abort only if a NACK from an elder transaction is received. Because a transac-
tion keeps on repeating the request when a NACK message is received, the mechanism is guaranteed
to be deadlock free. To reduce the number of aborts that may arise during long-running conflicts,
LogTM introduces a back-off delay when a transaction is aborted. After this delay, the transaction
is retried from the beginning. The back-off mechanism is implemented in software through a library
used by all applications. The back-off routine is called by a software handler as part of a work that
must be performed during a transactional abort. In detail, the routine computes a cumulative sum
over an array in a loop as many times as defined by a specific function. The upper limit of the loop
is increased exponentially as the number of retries suffered by the transaction grows.

LogTM-SE [5] is a refinement of LogTM that replaces RW bits with hash signatures (bloom
filters) that conservatively summarize a transaction’s read and write sets, decoupling transactional
bookkeeping from the caches, and enabling virtualization of transactions (as signatures are acces-
sible by software and the operating system). LogTM-SE is the version implemented in GEMS
simulator [17] and the eager-eager system we characterize in this work.

2.2. Scalable TCC

Scalable TCC [15] (STCC) is a popular, scalable, nonblocking implementation of TM that is
tuned for continuous use of transactions within parallel programs. STCC provides nonblocking
synchronization and an easy-to-understand consistency model. STCC relies on a directory-based
implementation of the TCC[18] model, which defines coherence and consistency in a shared mem-
ory system at transaction boundaries. Transactional stores are performed on the side using a write
buffer that keeps the speculative new values. The lazy approach to data versioning of STCC requires
that transactional data is write-backed into coherent memory only when a transaction commits.
STCC uses a two-phase parallel commit algorithm that is supported by a central arbiter. In the
validation phase, a transaction checks if it has conflicts with others. The central arbiter gives num-
bers in upward order (TID) to transactions to prioritize them in case of conflicts. Transactions
with higher TID must abort in case of conflicts with a transaction with smaller TID (prioritizing
eldest transaction). Once in the second commit phase, a transaction has acquired the privileges
to do commit and cannot be violated by other transactions. In this phase, a transaction makes
visible its changes to the rest of the system. Sequential Commit (SEQ) and its optimized flavor
SEQ with Parallel Reader Optimization (SEQ-PRO) [10] enhance the STCC system to improve
the performance of the commit phase. SEQ allows parallel commits using a distributed mecha-
nism that entails less message overhead than the original STCC commit algorithm. In SEQ (and
SEQ-PRO), the physically distributed banks of the L2 cache act as a distributed arbiter. Each bank
has a waiting queue. When a transaction reaches the (commit) phase, it sends a book directory
message—COMMIT_XACT—(in case of a directory-based protocol) to each bank in its read and
write sets in increasing order. One particular L2 bank will belong to a transaction’s write set if at
least one virtual address of this set is mapped to that bank. A transaction cannot send the subsequent
book message until the previously requested directory bank has acknowledge the booking request,
XACT_ACK. This confirmation is sent by the directory when the requester transaction reaches
the head of the waiting queue in that bank, acquiring the needed permissions. When a transaction
obtains all permissions from all L2 banks, it proceeds with the commit itself, making visible its
writes, aborting other conflicting transactions (if any), and dumping the values of its write buffer
into memory. At the end of the commit, the first place of the queue is released in each bank (release
subprocess), and new transactions (which have not been aborted by previous commits) can proceed
with the directory booking process if they reach the new head of the queue. From here on, we will

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



866 E. GAONA ET AL.

call the phase of booking directories as precommit. Our implementation of SEQ involves a multi-
cast release petition—XACT_RELEASE—and its corresponding confirmation, RELEASE_ACK.
When all confirmations have been received, the transaction completes successfully. If a transaction
is enforced to abort during its precommit phase, it sends a—EXIT_XACT—message to release each
L2 cache bank already booked. The corresponding L2 cache banks will update the waiting queue
and send an acknowledgement—EXIT_ACK—message back to the aborting transaction.

As in LogTM, a back-off mechanism is also employed in STCC. However, because aborts in
the case of STCC do not involve any software handler but are managed in hardware, the back-off
mechanism is also implemented in hardware. More specifically, in the case of abort, all changes
stored in the write buffer are discarded, and the number of cycles for the back-off delay is computed
taking into account the number of retries suffered by the aborting transaction. Subsequently, STCC
will disable the processor where the aborting transaction’s thread is running during the calculated
number of cycles.

The address mapping policy to the L2 cache banks is critical in STCC. To allow for parallel com-
mits, STCC needs that different transactions are able to book different L2 cache banks. In case of a
specific L2 cache bank belongs to two transactions’ read or write sets, there will not be any chances
for parallel commits between these two transactions because they will try to reserve simultaneously
the same L2 cache bank. Obviously, this situation is expected for transactions accessing the same
memory addresses. In this case, a conflict between them had been encountered, and eventually, one
of the transactions must be aborted. On the contrary, when two different memory lines belonging to
distinct read/write sets have been mapped to the same L2 cache bank, their corresponding transac-
tions would compete for it, although no real conflicts occur. In this case, STCC would be causing the
well-known serialized commits pathology [19] as a side effect of what we call directory aliasing.In
our implementation of STCC, the address mapping is carried out by assigning chunks of 128 KB of
contiguous addresses per L2 cache bank.

Finally, a more advanced version of the algorithm, known as SEQ-PRO [10], differentiates
between transactions that want to book a directory for reading from those that intend to write,
allowing the promotion to the final stage of commit of all readers as long as there are no writers
waiting. We are prioritizing writers over readers. In case some readers are stored in the readers queue
(and they have passed to book others banks automatically), a new writer must wait its turn, but no
other new reader will continue with the precommit subphase until the writer has finished its commit
(or abort) to avoid writer starvation.

3. EVALUATION ENVIRONMENT

In this section, we describe the evaluation environment used in this article. We start by giving
the details about how the eager-eager and lazy-lazy HTM systems considered in this work have
been implemented in the simulator. Additionally, we delineate the consumption models used to
characterize energy consumption. In particular, we focus on the energy consumed in the on-chip
memory hierarchy. Finally, we conclude with a description of the benchmarks used to conduct
the simulations.

3.1. System settings

We use a full-system execution-driven simulation based on the Wisconsin GEMS (University of
Wisconsin-Madison, Wisconsin, USA) toolset [17], in conjunction with Simics (Wind River,
Berkeley, CA, USA) [20]. We rely on the detailed timing model for the memory subsystem provided
by GEMS’s Ruby module, with the Simics in-order processor model. Simics provides functional
correctness for the SPARC ISA and boots an unmodied Solaris 10. We perform our experiments
on a tiled chip multiprocessor system, as described in Table II. We assume a 16-core configuration
with private L1 I&D caches and a shared, multibanked L2 cache consisting of 16 banks of 512 KB
each for the execution of the applications’ threads. We have left another core aside to run the oper-
ating system in an isolated way from the application threads to avoid intrusions from the same one
in benchmarks’ execution and obtaining uncorrupted statistics. The operating system still takes the

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



DESIGN OF ENERGY-EFFICIENT HARDWARE TRANSACTIONAL MEMORY SYSTEMS 867

Table II. System parameters.

MESI directory-based CMP

Cores 16, single issue, in order, nonmemory IPCD1

Memory and directory settings

L1 cache I&D Private, 32 KB, split 2 way, 1-cycle latency, 64 B lines
L2 cache Shared, 8 MB, unified 4 way, 12-cycle latency
L2 directory Bit vector, 6-cycle latency
Memory 4 GB, 300-cycle latency

Network settings

Topology 2D mesh
Link latency 1 cycle
Link bandwidth 16 bytes/cycle

CMP, chip multiprocessor; 2D, two-dimensional.

Table III. Parameters of Orion 2.0.

Parameter Value

in_port 6
tech_point 45
Vdd 1.0
transistor type NVT
flit_width 128 (bits)

control of the benchmarks’ execution when needed (i.e., during an exception). The L1 caches main-
tain inclusion with the L2 cache. The private L1 data caches are kept coherent through an on-chip
directory (at L2 cache banks), which maintains bit vectors of sharers (which are included in the tags’
part of the L2 cache banks) and implements the MESI protocol. The tiles are connected through a
two-dimensional mesh network. Each tile contains a router where the private L1, the slice of L2,
the memory controller, and the links to the neighboring tiles are connected to. In this 4 x 4 two-
dimensional mesh network, each router has between five and seven ports, with six ports per router
on average.

To compute energy consumption in the on-chip memory hierarchy, we consider both the caches
and the interconnection network. The amount of energy consumed by the interconnection network
has been measured on the basis of the Orion 2.0 [21]. In particular, we have extended the network
simulator provided by GEMS with the consumption model included in Orion 2.0. Table III shows
the values of some parameters assumed for the interconnection network. For those not listed in the
table, we use the default values given in Orion 2.0. On the other hand, energy spent in memory struc-
tures (L1, L2, Write_Buffer) has been measured on the basis of the consumption model of CACTI
5.3 rev 174 [22]. For the particular case of the L2 cache consumption measurement, we distinguish
the accesses that return cache blocks from those that only involve the tags’ part of the L2 cache
(i.e., those that would be performed by the directory controller to retrieve just the sharing
information for a particular cache memory block). Obviously, the latter entails less energy.

The Ruby module contains an implementation of LogTM-SE, an eager-eager system that
uses signatures for transactional bookkeeping. Additionally, Ruby provides a naive version of a
lazy-lazy system that employs a commit token to serialize transaction commits and whose arbitra-
tion takes places through an idealized zero-latency broadcast bus. This sequential commit process
with the presence of a centralized referee is similar to that proposed in [15], although it does not use
the interconnection network to coordinate the entire process. Thus, the lazy-lazy implementation
provided in GEMS is not only nonscalable, because the central referee would become a bottleneck,

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



868 E. GAONA ET AL.

but also unrealistic because a zero-latency bus is being assumed. For this reason, we have modi-
fied Ruby to implement the more efficient and scalable commit algorithms described in Section 2
that uses the two-dimensional mesh network. More specifically, we have evaluated in this work the
SEQ-PRO algorithm proposed by Pugsley et al. in [10]. SEQ-PRO allows for parallel commits
(as the SEQ algorithm) and implements the parallel reader optimization. To implement
SEQ-PRO, we had to add three new request messages involved in the commit and abort processes:
XACT_COMMIT, XACT_RELEASE, and XACT_EXIT and their confirmations: COMMIT_ACK,
RELEASE_ACK, and EXIT_ACK, respectively. In this way, the lazy-lazy system evaluated in this
work resembles to that presented in [10].

The undo log of the eager-eager system is a data structure mapped in virtual memory, and thus,
its size is not limited by any hardware structure. On the contrary, the write buffer required for the
lazy-lazy system has fixed size, which has been limited to 128 entries. Overflows of these write
buffers will entail accessing main memory for storing the data. The waiting buffers (queues) of the
directories in the lazy-lazy system contain 16 positions (as many as cores in the architecture), which
means that there will not be any NACK because of lack of space in the queues during the process of
precommit. Finally, the read and write sets of transactions in the lazy-lazy system are handled via
memory addresses. For the eager-eager system, we assume perfect signatures for detecting conflicts.

3.2. Benchmarks settings

For the evaluation, we use seven transactional benchmarks extracted from the Stanford Transac-
tional Applications for Multi-Processing (STAMP) benchmark suite 0.9.10 [23]. These applications
allow to stress a TM system in several ways. To show a wide range of cases, we evaluate STAMP
applications using the most significant input size in each case (in general, what is called medium
size). For the sake of focusing on transactional workload, ssca2 has been modified to skip a lot of
barrier work at the beginning of the benchmark that provokes a different behavior and hence results
change from [14]. Table IV describes benchmarks and values for the input parameters used in
this work.

4. EVALUATION

In this section, we present the results obtained for the eager-eager LogTM-SE system and the
lazy-lazy Scalable TCC system with the SEQ-PRO as commit algorithm (STCC-SP from now on).

We start with a fair comparison between these two HTM systems in terms of execution time.
After that, we study the energy consumption of each system while transactional workloads are run-
ning. Next, a comparison of the network traffic generated by both HTM systems is evaluated. Note
that some minor deviations of the results from those presented in [14] are unavoidable because
the new configuration used in this study prevents detrimental interferences from operating system
(see Section 3.1). Finally, we present some considerations for the two systems in an isolated
way, specifically, how different back-off implementations and address mapping policies affect the
LogTM-SE and the STCC-SP systems, respectively.

Table IV. Workloads and inputs.

Benchmark Input

Bayes -v32 -r4096 -n2 -p20 -i2 -e2
Intruder -a10 -l16 -n4096 -s1
Kmeans -m40 -n40 -t0.05

-i random-n16384-d24-c16
Labyrinth -i random-x32-y32-z3-n96
Ssca2 -s13 -i1.0 -u1.0 -l3 -p3
Vacation -n4 -q60 -u90 -r1048576 -t4096
Yada -a10 -i ttimeu10000.2

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



DESIGN OF ENERGY-EFFICIENT HARDWARE TRANSACTIONAL MEMORY SYSTEMS 869

4.1. Performance

For the seven transactional benchmarks pointed out in Section 3, Figure 1 shows the execution
times that are obtained for both LogTM-SE and STCC-SP. In all cases, execution times have been
normalized with respect to the STCC-SP system. Moreover, to have a clear understanding of the
results, Figure 2 divides the execution times into the following categories: abort (time spent during
aborts), barrier (time spent in barriers), commit (time needed to propagate the write sets), non_xact
(time spent in non-transactional execution), precommiting (time taken by the process of booking
directories in STCC-SP), stall (time waiting until another transaction ends), xact_useful (useful
transactional time), and xact_wasted (transactional time wasted because of aborts). The back-off
fraction represents the time spent before restarting transactions. The use of back-offs aims to avoid
contention situations that arise when several transactions are being aborted repeatedly because they
conflict with each other over and over again after being restarted. Its upper bound in cycles raises
according to the number of retries of the current aborting transaction. We have observed that without
this back-off mechanism, the wasted time (xact_wasted) drastically increases in some cases as the
number of aborts grows.

As it can be derived from Figure 1, there is no clear winner when LogTM-SE and STCC-SP are
compared in terms of performance. In particular, LogTM-SE outperforms STCC-SP for ssca2 and
vacation. In turn, STCC-SP beats LogTM-SE for bayes, intruder, labyrinth, and yada. For kmeans,
there is no noticeable difference between the performance of LogTM-SE and STCC-SP because
most of the execution time is performing nontransactional work. However, the extents of the differ-
ences are quite small when LogTM-SE is the winner (except for ssca2) and very significant when
STCC-SP beats LogTM-SE (even reaching a difference of 190% more for intruder). In this way, the

bayes
intru

der

kmeans

labyrinth
ssca2

vacation
yada

Average

Applications

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e LogTM-SE
STCC

Figure 1. Normalized execution times.

STCC-SP
LogTM-SE

bayes

intru
der

kmeans

labyrinth
ssca2

vacation
yada

Average

Applications

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e 
(b

re
ak

do
w

n) abort
backoff

barrier
commit

non_xact
precommiting

stall
xact_useful

xact_wasted

Figure 2. Breakdown of the execution times.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



870 E. GAONA ET AL.

lazy-lazy STCC-SP system improves performance (about 26% on average) when compared with
the eager-eager LogTM-SE system. In the succeeding paragraphs, we try to explain the differences
observed for each benchmark taking into account the breakdown of the execution times presented
in Figure 2 and the characteristics of each application along with its data access patterns.

The algorithm implemented in bayes is not deterministic. In particular, its behavior depends on
how the branches of the bayes network are carried out, which can change between executions.
As a consequence, there is great variance between executions. Its large contention, transactional
time, and write sets [23] also lead to a nonnegligible number of conflicts, which is detrimental to
LogTM-SE. STCC-SP does not have to deal with the contention until the commit phase, and there
will be always one committer (transaction that performs commit) at least.

High contention and short transactions are the main characteristics of intruder. As before, many
conflicts take place with LogTM-SE has to deal with lots of conflicts what makes difficult forward
progress of its transactions. Besides, this high degree of contention provokes many aborts. This is
what causes the bad behavior of LogTM-SE. The back-off time needed grows hugely because of
the exponential implementation of the back-off upper bound used in STAMP for LogTM-SE. As
a consequence, LogTM-SE degrades the performance by a factor of 3 according to STCC-SP. On
the other hand, STCC-SP leverages on its optimistic concurrency control to perform a more fluent
behavior, leading to both fast transactional executions and fast abort processes.

For ssca2, LogTM-SE reduces execution time of STCC-SP to a fifth part. The reason can be
appreciated in Figure 2. Almost 80% of the time of STCC-SP is spent in the precommit phase
(precommiting in figures). As already commented, in this phase, transactions are waiting for each
other in the queues of the directories. In a normal execution, if two transactions do not present
conflicts between their read and write sets, they will be able to make parallel fast commits if their
consumed data are mapped in different directories banks. Otherwise, an induced conflict for acquir-
ing the directory is produced. Furthermore, there is no significant wasted time due to the absence of
real conflicts. We call this behavior as directory aliasing that entails the well-known serialized com-
mits pathology [19] of the lazy-lazy systems. With other physical address mapping, precommiting
time could be smaller as it is shown in Section 4.5.

Such as bayes, yada has significant transactional time and write sets and medium contention [23],
what entails a significant number of conflicts. The behavior of LogTM-SE with yada is character-
ized by the importance of the stall time together with a mix of back-off and wasted time. Most of the
transactions spend 30% of their time in an active waiting (stall) trying to solve conflicts. Although
aborts are frequent, the back-off time is much smaller than with bayes because the number of retries
per transaction is smaller too. As opposed to LogTM-SE, STCC-SP time is characterized by the
fraction of the time wasted by aborting transactions. There is barely precommit time, what means
that conflicts are not induced by the directory aliasing phenomenon found in ssca2. Conflicts arise in
this benchmark because most transactions want to have access to the same addresses. This behavior
leads to an important number of aborts, which in turn results into a significant fraction of wasted
time in lazy-lazy systems (47% approximately).

Time patterns in labyrinth are quite similar to those found in yada. The differences are in wasted
time allocation with LogTM-SE. The abort takes place before, resulting in shorter stalls but increas-
ing the wasted time because of aborting transactions. Labyrinth’s characteristics are the same ones
as bayes.

The rest of the benchmarks show similar results with both systems. On the one hand, taking into
account the average breakdown execution time, the bottleneck found for STCC-SP is its precommit
phase, especially when directory aliasing takes place. On the other hand, LogTM-SE and its pes-
simistic concurrency control involve a worse general behavior with larger stall and back-off times
than in STCC-SP. Allowing LogTM-SE and STCC-SP to use a lineal back-off function and a more
refined precommit stage, respectively, could improve their performance.

4.2. Energy

Figure 3 shows the dynamic energy consumption of LogTM-SE and STCC-SP. As before, results
have been normalized with respect to STCC-SP. Additionally, in Figure 4, we split the energy

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



DESIGN OF ENERGY-EFFICIENT HARDWARE TRANSACTIONAL MEMORY SYSTEMS 871

bayes
intru

der

kmeans

labyrinth
ssca2

vacation
yada

Average

Applications

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n LogTM-SE

STCC

Figure 3. Normalized energy consumption.

STCC-SP

LogTM-SE

bayes

intru
der

kmeans

labyrinth
ssca2

vacation
yada

Average

Applications

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n 

(b
re

ak
do

w
n)

L1
L2

Link
Router

Write_Buffer

Figure 4. Breakdown of energy consumption. Hardware structures.

consumed in each case for LogTM-SE and STCC-SP into the following categories: energy
spent accessing the L1 and L2 caches (L1 and L2, respectively), the write buffer in STCC-SP
(Write_Buffer), and the network routers and links (Router and Link, respectively). Again, for most
applications, STCC-SP beats LogTM-SE when energy consumption is considered. Only for ssca2,
LogTM-SE shows better results. For kmeans and vacation, there are no noticeable differences
between both systems. Note that although the average difference in performance among the two
systems was 26% in favor of STCC-SP, the latter outperforms about 38% LogTM-SE when energy
is considered.

The differences in terms of energy consumption found in bayes, kmeans, labyrinth, and vaca-
tion for LogTM-SE and STCC-SP are almost identical to the ones previously reported in terms of
execution time. For kmeans and vacation, the compared systems neither show any noticeable differ-
ence in execution time nor in energy consumption. For bayes and labyrinth, the improvement of 38
and 18%, respectively, found for STCC-SP in execution time directly translates into a reduction of
almost the same extent in energy consumption.

For intruder, we can see that LogTM-SE consumes much more energy than STCC-SP. In this case,
the differences are not justified by just taking into account the execution times. Labyrinth algorithm
tries to write a road in a 32�32�3 matrix. Each thread first locks the entire matrix to read data;
next, it operates with the data locally until a road is found; after this, it tries to write the road, which
potentially brings modifications into the cells that form the road that other transaction is processing;
finally, if any of the cells have been previously modified by other transaction, the transaction must

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



872 E. GAONA ET AL.

abort and restart from the beginning. With 16 cores, the probability of collision between roads is
high, entailing a significant number of conflicts being detected and therefore aborts. An eager-eager
system would have more difficulties in these situations to commit transactions because it is pos-
sible that one road that was colliding with another has also collisions with a third one and so on,
leading to long chains of dependencies between transactions. Transactions with STCC-SP will com-
mit more easily because when they acquire the commit permissions (reserve all directories in our
case) no other transactions can abort them. Additionally, the fact that there are 16 elements of one
row per cache block in labyrinth creates a high degree of false sharing, which leads to a noticeable
number of false conflicts between transactions. All these conflicts (true and false conflicts) provoke
in LogTM-SE a big number of messages on the interconnection network (to check conflicts) and
cache accesses, which drastically increases energy consumption. Something similar happens with
intruder: significant contention and a large fraction of aborts lead to much more energy consumption
and execution time in eager-eager systems than in lazy-lazy systems.

Although STCC-SP is more energy-efficient than LogTM-SE in yada, the difference is about
20%, whereas the performance gap is close to 30%. This is because STCC-SP experiences a great
amount of aborts, increasing significantly the energy consumed in the L1 caches as well as in the
network. On the contrary, LogTM-SE spends much of its time in the stall phase, what is translated
into request messages and their corresponding NACK responses, which increases the amount of
energy consumed in the interconnection network.

Finally, ssca2 is the only application that exhibits noticeable differences in terms of energy con-
sumption in favor of LogTM-SE (energy reductions about 65% are obtained). In this case, the
difference is concentrated on the energy consumed in the interconnection network (routers in par-
ticular). As already discussed, STCC-SP spends almost 80% of its time in ssca2 in the precommit
phase. During this phase, messages for booking directories are being exchanged between processors
and L2 cache banks. There is another consideration we have to take into account. Orion 2.0 uses
clock frequency to calculate energy spent by its component (routers and links) and because of the
intrinsic relationship between frequency (cycles/second) and the execution time (cycles), this last
parameter can affect the network consumption.

The breakdown of energy consumption presented by Figure 4 shows that the interconnection net-
work takes the most important part of the consumed dynamic energy, with 65% in STCC-SP and
59% in LogTM-SE. It is worth noting that the energy consumed in the L2 cache, the links of the
interconnection network, and the write buffer (only for STCC-SP) is almost negligible (8% of total
energy). Consumption in L1 caches, however, can be between 20 and 50% of the total energetic
expense (36% on average). The fraction of the energy consumed in the network is more evident for
applications with high contention such as intruder. Some issues that motivate the increased energy
consumption found in LogTM-SE are the following:

� Cache coherence protocol: assume the case of a request for a data block in an exclusive mode,
that is, in SS state in the L2 (0 o more sharers). In this case, the directory must first send
invalidations to the sharers (if any) and then provide the data block to the requester. Acknowl-
edgements for the invalidations are collected by the requester. If any of the the shares answers
with a NACK message, the received data must be discarded by the requester. In these cases, the
L1 cache, the L2 cache bank, and the interconnection network have been used, and because the
data has to be discarded, all this energy is wasted. Something similar happens when the data is
in Mt state (data in L2 and so it is sent to the requester, but this operation must be checked with
the current owner, which can invalidate the action).
� Use of retries: the eager-eager system retries continuous memory requests (see stall state in

Figure 2) in case of conflicts until the corresponding transaction aborts or achieves its goal.
This supposes a considerable energetic expense.

With regard to the energy consumed in the interconnection network, we have found that the most
important fraction is due to the routers (60% in average), whereas the links only consume an 8%.
Obviously, the amount and the distribution of energy consumed in the interconnection network
will depend on its particular characteristics. In this work, we are assuming a relatively small flit

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



DESIGN OF ENERGY-EFFICIENT HARDWARE TRANSACTIONAL MEMORY SYSTEMS 873

bayes
intru

der

kmeans

labyrinth
ssca2

vacation
yada

Average

Applications

0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
3.6
3.9
4.2
4.5
4.8

N
or

m
al

iz
ed

 n
et

w
or

k 
tr

af
fic

 (
by

te
s) LogTM-SE

STCC

Figure 5. Normalized network traffic.

size (16 bytes) and six-input port routers, which makes the routers the most important source of
energy consumption.

4.3. Network traffic

Figure 5 shows the levels of traffic in the interconnection network (measured as flits per cycle) for
both LogTM-SE and STCC-SP. As before, results have been normalized with respect to the last one.
In general, LogTM-SE entails higher traffic levels than STCC-SP (approximately 70%, on average).
The reason can be found in the high number of retries needed in LogTM-SE to achieve data in
case of conflicts. This fact is highlighted because sometimes the received data are not valid and
must be discarded (see Section 4.2). The difference in network traffic is considerable in the case
of bayes, intruder, and yada. These benchmarks are characterized by exhibiting high contention
and/or by the large size of their transactions [23]. During the stall phase of LogTM-SE’s execu-
tion, intensive usage of interconnection network is made because a transaction retries continuously
the access to the corresponding memory address until the owner stops sending the NACK response
or the transaction aborts. In STCC-SE, the precommit phase does not make such an intensive use
of the interconnection network because the number of messages required to book directories is
limited [10].

4.4. Influence of the back-off mechanism in eager-eager systems

In this section, we analyze the influence that the election of the back-off mechanism used in eager-
eager systems has on performance and energy consumption. As already discussed in Section 2, the
back-off mechanism originally implemented in LogTM-SE, which is called exponential software
back-off (ESB), consists of a software routine invoked by the software handler that manages the
aborts before the aborting transaction can be retried. Figure 6 presents the pseudocode of the rou-
tine. As it can be observed, it simply computes a cumulative sum over an array in a loop as many
times as determined by a specific function. Particularly, the upper limit of the loop grows with
the number of retries suffered by the aborting transaction as shown in Equation (1) (N stands for

Figure 6. Software back-off routine implemented in LogTM-SE.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



874 E. GAONA ET AL.

the number of retries). In this way, the larger the number of aborts experienced by a transaction,
the longer the amount of time before the transactions can be re-executed. The upper limit grows
exponentially until the number of retries reaches 16. After this, the upper limit barely increases.
Additionally, to ensure that transactions aborting at the same time find a different duration for the
back-off phase, the number of iterations over the loop is a random between zero and the calculated
upper limit.

upper boundD

�
2N if N � 16I
216C .N � 16/ if N > 16.

(1)

Obviously, the use of the back-off mechanism is aimed to reduce the degradation arising in
high-contention situations (several transactions fighting for the same data at the same time), and
therefore, its election conditions the performance and energy consumption of transactional appli-
cations experiencing this kind of situations. The back-off mechanism implemented in LogTM-SE
is an example of an energy inefficient design decision. During the back-off phase, the processor is
active, executing a loop that does nothing. This translates into energy wasted in the processor (not
accounted in our study) and the memory hierarchy (extra accesses to the L1 cache).

To analyze the importance that the back-off mechanism has in some applications, we study the
case of implementing it in hardware. To do so, after the abort process has been completed, the
number of cycles that the processor must wait until it can re-execute the transaction is calculated,
and the thread is disabled during this period of time (because we are simulating one thread per
core; this would be equivalent to suspending the processor during the computed amount of cycles).
In particular, we have implemented two flavors of hardware back-off. The first, which is called
exponential hardware back-off (EHB), is inspired by the software mechanism originally included in
LogTM-SE and tries to show how implementing the back-off in software is a bad design decision
from the energy point of view. The second, referred to as linear hardware back-off (LHB), uses ini-
tially more aggressive increases in waiting time to cut off congestion, and therefore, improve also
performance in applications that suffer a high level of contention.

We implement the EHB scheme by modifying the software routine that is called as part of the
abort process in LogTM-SE. More specifically, we estimate the number of cycles that it would take
to execute one iteration of the loop shown in Figure 6 and calculate the waiting time by multiplying
this by a random number between zero and the upper limit. As in the ESB scheme, the upper limit is
calculated following Equation (1). Figure 7 summarizes how the hardware back-off has been imple-
mented. As it can be observed, we have estimated that each iteration of the loop shown in Figure 6
takes approximately 14 cycles because it would involve the execution of 14 machine instructions,
and we are assuming single issue, in order cores (Instructions per cycle (IPC) value of 1).

Finally, the LHB scheme differs from EHB in the way in which the upper limit is calculated.
As already commented, the EHB and ESB mechanisms increase the upper limit exponentially with
the number of retries, as illustrated by Equation (1). This results in a slight increase in the upper
limit when suffering the first aborts. We have observed that for applications with high contention,
initial small waiting times cause a significant number of aborts, and consequently, wasted work.
Alternatively, the LHB scheme explores the effects of a more aggressive way of computing the
upper limit. In particular, we consider the linear approach presented in Equation (2). Compared
with Equation (1), this approach differs in how the upper limit is increased for the first 256 retries
of a transaction, which is performed linearly in steps of 256. After 256 retries, both the EHB and
ESB mechanisms would update the upper limit in the same way. These values have been chosen
through experimentation.

upper boundD

�
28 �N if N � 256I
216C .N � 256/ if N > 256.

(2)

Figure 7. Implementation of the hardware back-off.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



DESIGN OF ENERGY-EFFICIENT HARDWARE TRANSACTIONAL MEMORY SYSTEMS 875

LogTM LHB

LogTM ESB

LogTM EHB

bayes
intru

der

kmeans

labyrinth
ssca2

vacation
yada

Average

Applications

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e 
(b

re
ak

do
w

n) abort
backoff
barrier

commit
non_xact
precommiting

stall
xact_useful
xact_wasted

Figure 8. Breakdown of the execution times of eager-eager for different back-off mechanisms.

Figure 8 plots the execution times that are obtained for the three back-off schemes previously
discussed. All execution times have been normalized with respect to the values obtained for the
base case (LogTM-SE with the ESB mechanism). Again, all bars have been split into the categories
presented in Section 4.1. From this graph, we can extract two main observations. The first is that,
as expected, LogTM_ESB and LogTM_EHB obtain virtually the same results in terms of execution
time. As discussed, the EHB mechanism approaches the behavior of the ESB but implements the
waiting by stalling the processor instead of executing the loop of Figure 6. The second observation
is that for applications with high contention and short transactions, such as intruder, the fact that the
LHB scheme increases waiting times more rapidly than both the EHB and ESB ones, results in a
very significant reduction in the number of aborts (see the abort category). In particular, the num-
ber of aborts in intruder is about 150,000 for both the EHB and ESB schemes, hogging one of the
three transactions found in this application almost two-thirds of the total number of aborts. On the
contrary, the number of aborts suffered when the LHB scheme is used is reduced to 43,000, being
approximately 22,000 caused by the specially conflicting transaction. This reduction in the num-
ber of aborts translates also into noticeable reductions in the fraction of the execution time wasted
because of aborts (Xact_wasted) and the back-off time. At the end, these improvements translate
into a significant reduction in the execution time (47%). For the rest of the applications, the use of
the LHB scheme barely affects execution time. The exception is yada, which is penalized by the
longer waiting times entailed by LHB.

Also, very interesting are the results obtained in terms of energy reductions, which are presented
in Figure 9. Again, all results are normalized with respect to the base configuration (LogTM_ESB).
Contrary to the case of execution times, the energy figures exhibited by the ESB and EHB schemes
differ significantly for applications having a noticeable fraction of the execution time because of the
back-off, namely bayes, intruder, and yada. As it can be observed, these differences come funda-
mentally from the amount of energy consumed in the L1 caches. The fact that the ESB scheme keeps
the processor, executing instructions during a back-off results into an increased number of accesses
to the L1 caches when compared with the EHB scheme. Finally, the LHB scheme also brings a very
significant reduction in terms of energy consumption for intruder application. This reduction comes
from the ability of the LHB scheme to drastically reduce the number of aborts in this application.

4.5. Influence of directory aliasing in lazy-lazy systems

One of the performance pathologies in HTM systems identified in [19] is serialized commit. HTM
systems that use lazy CD must serialize transactions during the commit phase to guarantee the seri-
alization property, that is, to ensure a global serial order in transaction completion. In this way, this
pathology exclusively affects lazy-lazy systems such as STCC-SP. Committing transactions may

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



876 E. GAONA ET AL.

LogTM LHB

LogTM ESB

LogTM EHB

bayes
intru

der

kmeans

labyrinth
ssca2

vacation
yada

Average

Applications

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n 

(b
re

ak
do

w
n)

L1
L2
Link

Router
Write_Buffer

Figure 9. Breakdown of the energy consumed by eager-eager for different back-off mechanisms.

stall while they are waiting for other transactions to commit. In this way, if there is contention during
the commit phase, the stall time might considerably increase the overall transaction execution time.
Moreover, the performance impact of serialized commits may be quite significant for applications
with small transactions.

As explained in Section 2, STCC-SP enhances the original lazy-lazy HTM system proposed in
[15] to improve the performance of the commit phase with the SEQ-PRO algorithm that allows for
parallel commits in some cases [10]. To do so, the physically distributed banks of the L2 cache act
as a distributed arbiter. When a transaction reaches the precommit phase, it must book all L2 cache
banks belonging to its read and write sets in increasing order. One particular L2 cache bank will
belong to a transaction’s write set if at least one address of this set is mapped to that bank. Two or
more transactions can go through the precommit phase simultaneously if they book disjoint sets of
L2 cache banks. Otherwise, there will be a single committing transaction while the others will have
to wait.

Conflicting L2 cache banks may be due to transactions accessing the same memory address. If
that is the case, one of the transactions must be aborted. However, it may also happen that two or
more transactions access different memory addresses that map to the same L2 cache bank. There-
fore, even though no real conflict occurs, a side effect of the serialized commit pathology that we call
directory aliasing takes place. The directory aliasing phenomenon directly depends on the address
mapping policy of the underlying chip multiprocessor architecture, the data access pattern, and the
size of the read and write sets of the transactions. It is worth noting that the combination of both
determines the set of L2 cache banks that need to be reserved during the precommit phase. The
smaller the number of L2 cache banks to be booked, the faster the precommit phase will come to an
end. Nevertheless, this does not necessarily mean a better behavior because of directory aliasing.

So far, all the experiments have assumed the default address mapping policy used by GEMS.
Such an address mapping policy is depicted in Figure 10 and proceeds as follows. Cache block size
is 64 bytes; hence, the block offset comprehends the six lowest order address bits. Each L2 cache
bank is composed of 2048 sets of four cache blocks each so that the set index requires the following
eleven lowest order bits. Then, the next four bits are used to index the particular L2 cache bank. In
this scheme, each L2 cache set is mapped to the same L2 cache bank, that is, blocks of 128 KB are
assigned to the same L2 cache bank. As opposed to the block address mapping policy, the cyclic
address mapping policy, also shown in Figure 10, uses the four lowest order bits following the block
offset to select the L2 cache bank. In this way, consecutive L2 cache banks are cyclically assigned
cache blocks in ascending order. The rest of this section analyzes the impact of the address mapping
policy in terms of performance and energy efficiency on the very same set of benchmarks used in
the previous sections.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



DESIGN OF ENERGY-EFFICIENT HARDWARE TRANSACTIONAL MEMORY SYSTEMS 877

(a) Block address mapping policy.

(b) Cyclic address mapping policy.

Figure 10. Address mapping policies of cache blocks to L2 banks. (a) Block and (b) cyclic.

STCC-SP C

STCC-SP B

bayes

intru
der

kmeans

labyrinth
ssca2

vacation
yada

Average

Applications

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e 
(b

re
ak

do
w

n) abort
backoff

barrier
commit

non_xact
precommiting

stall
xact_useful

xact_wasted

Figure 11. Breakdown of the execution times of lazy-lazy for different address mapping polices.

In Figure 11, we compare the execution time of the benchmarks when using a block address
mapping policy as opposed to a cyclic address mapping policy. Results are normalized to the block
address mapping policy used by GEMS. As we can see, the impact of this policy is not relevant for
most benchmarks. In particular, there are minor differences for bayes, kmeans, labyrinth, vacation,
and yada. On the contrary, intruder and ssca2 suffer considerable deviations from the base case. In
particular, intruder and ssca2 experience an increase and a reduction of 35 and 22% in the execution
time, respectively. With ssca2, even though the cyclic address mapping policy may involve booking
a larger number of L2 cache banks, it is scattering memory accesses to the main data structure of
the application on different L2 cache banks. This directly translates into a much shorter precommit
phase because more transactions can go through the precommit phase in parallel (54% of parallel
commits with two or more transactions). Because transactions in ssca2 are quite small, the precom-
mit phase accounts for a significant percentage of the total execution time. Consequently, reductions
in the precommit phase time directly decrease the overall execution time of ssca2. Unlike ssca2, the
cyclic address mapping policy negatively affects intruder. In this case, the cyclic address mapping
policy unnecessarily increases the number of L2 cache banks involved in the precommit phase. One
of the transactions manipulates a queue of elements, that is, all threads running such a transaction
access the very same queue and dequeue pointers. The problem arises because the cyclic address
policy makes it necessary to book two L2 cache banks rather than one. This fact triggers a chain
reaction of increased precommit phase time, number of aborts (32% increment), back-off time, and
transactional wasted time.

Finally, Figure 12 shows the energy consumption breakdown by hardware structures when com-
paring the block address mapping policy with the cyclic address mapping policy. With ssca2, the
router energy expenses decrease because of the shortened precommit phase. Note that the pro-
nounced reduction is due to the Orion 2.0 router energy model that exhibits a sublinear power
growth with respect to the network average load. For the same reason, intruder energy requirements
substantially increase mostly due to the router energy consumption.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



878 E. GAONA ET AL.

STCC-SP C

STCC-SP B

bayes
intru

der

kmeans

labyrinth
ssca2

vacation
yada

Average

Applications

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n 

(b
re

ak
do

w
n)

L1
L2

Link
Router

Write_Buffer

Figure 12. Breakdown of the energy consumed by lazy-lazy for different address mapping polices.

5. CONCLUSIONS

This article presents a comprehensive analysis of two well-known HTM systems, namely
LogTM-SE and Scalable TCC, that represent the eager-eager and lazy-lazy approaches for VM and
CD, respectively. Our experiments, conducted on a widely accepted simulation platform, compare
both HTM systems in terms of execution time, energy consumption, and network traffic. Results
show that even though the lazy-lazy system outperforms the eager-eager system on average, there are
considerable deviations depending on the particular characteristics of each application. In addition,
we also found that reductions in the execution time are not directly proportional to equivalent reduc-
tions in either energy consumption or network traffic mainly due to their particular implementations
or the pathologies they suffer.

In general, contention with LogTM-SE leads to a large number of either stalled or aborted trans-
actions depending on their write sets interactions. This behavior generates a lot of network traffic
because of the persistent stall process, which translates into a significant amount of energy spent
in the interconnection network. Additionally, we have found that when the number of aborts is
high, a significant fraction of the energy consumed in the memory hierarchy is attributable to
the back-off mechanism. In particular, the software version of the back-off mechanism originally
included in LogTM-SE (ESB) is energy-inefficient because waitings are implemented by execut-
ing several instructions in a loop. This increases the amount of energy consumed in the L1 caches
when compared with a hardware implementation of the same algorithm (EHB). In general, the EHB
implementation brings reductions in terms of energy consumption ranging from 10 to 30% for appli-
cations that spend a nonnegligible fraction of their time in the back-off phase (viz., bayes, intruder,
and yada). Additionally, we have found that the LHB implementation can significantly reduce the
execution time of intruder application by cutting off the number of aborts that this application would
suffer in an eager-eager system, and consequently, by easing forward progress. Although a reduction
of 47% in execution time is obtained for intruder when the LHB scheme is employed, STCC-SP still
is the clear winner.

Meanwhile, the optimistic concurrency control of Scalable TCC guarantees that at least one trans-
action will be able to commit in the presence of contention. Nevertheless, the address mapping
policy to cache banks may cause the appearance of directory aliasing in some applications that arti-
ficially induces the serialized commits pathology. A further analysis reveals that a cyclic address
mapping policy of cache blocks to L2 cache banks may thwart the effects of directory aliasing in
some applications, such as ssca2, by scattering memory accesses to different L2 cache banks. How-
ever, it also may be detrimental to other applications, such as intruder, where contention is due to

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



DESIGN OF ENERGY-EFFICIENT HARDWARE TRANSACTIONAL MEMORY SYSTEMS 879

real conflicts. In this case, the block address mapping policy enlarges the precommit phase given
the fact that the committing transactions need to reserve a larger number of L2 cache banks.

ACKNOWLEDGEMENTS

This work has been jointly supported by the Spanish MEC and MICINN under grant TIN2009-141475-
C04-02 and European Comission FEDER funds under grant Consolider Ingenio-2010 CSD2006-00046.
Epifanio Gaona is supported by a fellowship 09503/FPI/08 from Fundación Séneca, Agencia Regional de
Ciencia y Tecnología de la Región de Murcia (II PCTRM).

REFERENCES

1. Borkar S. Thousand core chips: a technology perspective. Design Automation Conference (DAC-44), San Diego,
California, 2007; 746–749.

2. Dice D, Lev Y, Moir M, Nussbaum D. Early experience with a commercial hardware transactional memory
implementation. 14th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-14), Washington, DC, 2009; 157–168.

3. Herlihy M, Eliot J, Moss B. Transactional memory: architectural support for lock-free data structures. International
Symposium on Computer Architecture (ISCA-20), San Diego, California, 1993; 289–300.

4. Harris T, Cristal A, Unsal OS, Ayguad E, Gagliardi F, Smith B, Valero M. Transactional memory: an overview. IEEE
Micro May-June 2007; 27(3):8–29.

5. Yen L, Bobba J, Marty MR, Moore KE, Volos H, Hill MD, Swift MM, Wood DA. LogTM-SE: decoupling
hardware transactional memory from caches. 13th International symposium on high performance computer
architecture (HPCA-13), Phoenix, Arizona, 2007; 261–272.

6. Tomic S, Perfumo C, Kulkarni CE, Armejach A, Cristal A, Unsal OS, Harris T, Valero M. EazyHTM: eager-lazy
hardware transactional memory. 42nd International Symposium on Microarchitecture (MICRO-42), New York, NY,
USA, 2009; 145–155.

7. Bobba J, Goyal N, Hill MD, Swift MM, Wood DA. TokenTM: efficient execution of large transactions with
hardware transactional memory. 35th International Symposium on Computer Architecture (ISCA-35), Beijing, China,
2008; 127–138.

8. Rajwar R, Herlihy M, Lai KK. Virtualizing transactional memory. 32nd International Symposium on Computer
Architecture (ISCA-32), Madison, Wisconsin, USA, 2005; 494–505.

9. Ananian CS, Asanovic K, Kuszmaul BC, Leiserson CE, Lie S. Unbounded transactional memory. 11th International
Conference on High-Performance Computer Architecture (HPCA-11), San Francisco, CA, USA, 2005; 316–327.

10. Pugsley SH, Awasthi M, Madan N, Muralimanohar N, Balasubramonian R. Scalable and reliable communication for
hardware transactional memory. 17th International Conference on Parallel Architecture and Compilation Techniques
(PACT-17), Toronto, Ontario, Canada, 2008; 144–154.

11. Ceze L, Tuck J, Torrellas J, Cascaval C. Bulk disambiguation of speculative threads in multiprocessors. 33rd
International Symposium on Computer Architecture (ISCA-33), Boston, MA, USA, October 6, 2006; 227–238.

12. Shriraman A, Dwarkadas S. Refereeing conflicts in hardware transactional memory. 23rd International Conference
on Supercomputing (ICS-23), Yorktown Heights, NY, USA, 2009; 136–146.

13. Ferri C, Wood S, Moreshet T, Bahar RI, Herlihy M. Embedded-TM: energy and complexity-effective hardware
transactional memory for embedded multicore systems. Journal of Parallel and Distributed Computing (JPDC)
October 2010; 70(10):1042–1052.

14. Gaona-Ramirez E, Titos-Gil R, Fernandez J, Acacio ME. Characterizing energy consumption in hardware transac-
tional memory systems. 22nd International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD-22), Petropolis, Brazil, 2010; 9–16.

15. Chafi H, Casper J, Carlstrom BD, McDonald A, Minh CC, Baek W, Kozyrakis C, Olukotun K. A scalable,
non-blocking approach to transactional memory. 13th International Conference on High-Performance Computer
Architecture (HPCA-13), Phoenix, Arizona, USA, 2007; 97–108.

16. Moore KE, Bobba J, Moravan MJ, Hill MD, Wood DA. LogTM: log-based transactional memory. 12th International
Symposium on High-Performance Computer Architecture (HPCA-12), Austin, Texas, 2006; 254–265.

17. Martin MMK, Sorin DJ, Beckmann BM, Marty MR, Xu M, Alameldeen AR, Moore KE, Hill MD, Wood DA.
Multifacet’s general execution-driven multiprocessor simulator (GEMS) toolset. ACM SIGARCH Computer
Architecture News 2005; 33(4):92–99.

18. Hammond L, Wong V, Chen MK, Carlstrom BD, Davis JD, Hertzberg B, Prabhu MK, Wijaya H, Kozyrakis C,
Olukotun K. Transactional memory coherence and consistency. 31st International Symposium on Computer
Architecture (ISCA-31), Munich, Germany, 2004; 102–113.

19. Bobba J, Moore KE, Volos H, Yen L, Hill MD, Swift MM, Wood DA. Performance pathologies in hardware
transactional memory. 34th International Symposium on Computer Architecture (ISCA-34), San Diego, CA, USA,
2007; 81–91.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe



880 E. GAONA ET AL.

20. Magnusson PS, Christensson M, Eskilson J, Forsgren D, Hallberg G, Hogberg J, Larsson F, Moestedt A, Werner B.
Simics: a full system simulation platform. IEEE Computer February 2002; 35:50–58.

21. Kahng AB, Li B, Peh LS, Samadi K. ORION 2.0: a fast and accurate NoC power and area model for early-stage
design space exploration. Design, Automation & Test in Europe (DATE-1), Nice, France, 2009; 423–428.

22. HP Labs. (Available at: http://quid.hpl.hp.com:9081/cacti) [June 2011].
23. Minh CC, Chung J, Kozyrakis C, Olukotun K. STAMP: Stanford transactional applications for multi-processing.

4th IEEE International Symposium on Workload Characterization (IISWC-4), Seattle, WA, USA, 2008; 35–46.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:862–880
DOI: 10.1002/cpe


