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1. INTRODUCTION

There is an exigent need for high-productivity approaches that allow control of
concurrent accesses to data in shared memory multithreaded applications without
severe performance penalties. This has led researchers to look seriously at the concept
of Transactional Memory (TM) [Herlihy and Moss 1993; Harris et al. 2010]. TM allows
the programmer to demarcate sections of code—called transactions—which must be
executed atomically and in isolation from other concurrent threads in the system.
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Fig. 1. Two livelock scenarios in requester-wins HTM.

The TM system detects and resolves conflicts, i.e., circumstances when two or more
transactions access the same shared data and at least one modifies it.

Although TM has been an active research topic for almost a decade [Hammond
et al. 2004; Ananian et al. 2005; Yen et al. 2007; Shriraman et al. 2008; Blundell
et al. 2010; Lupon et al. 2010; Jafri et al. 2013], bare-bones support for Hardware
Transactional Memory (HTM) is only just appearing. Large-scale adoption of software-
only approaches has been hindered for long by severe performance penalties arising
out of the need for extensive instrumentation and book-keeping to track transactional
accesses and detect conflicts without hardware support. Intel TSX extensions and
IBM BlueGene-Q are now testing the waters with hardware TM [Intel Corporation
2012; Wang et al. 2012]. Restricted Transactional Memory (RTM) as described in Intel
TSX specifications appears to be a requester-wins HTM where transactions abort if
a conflicting remote access is seen while executing a transaction. Transactions may
also abort when hardware resource limitations (e.g., cache capacity) or exceptional
hardware events (interrupts) are encountered. In this study, we are primarily concerned
with the nature of the requester-wins conflict resolution policy and not with conditions
arising out of lack of hardware resources or exceptions. The authors do not have access
to implementation details of Intel RTM and, thus, results in this article must be seen
in the more general context of requester-wins HTM designs.

Requester-wins HTMs are easy to incorporate in existing chip multiprocessors
[Chung et al. 2010; Christie et al. 2010]. Conflict detection and resolution mecha-
nisms in such systems do not require any global communication except that which
naturally arises from the need to impose cache coherence. Each core tracks accesses
made by transactions that run locally. This could be done using cache line annotations
indicating lines that have been read or written. Some implementations may choose
to employ read/write set bloom filters for the purpose. Either way, the requester-wins
policy has no inherent forward progress guarantees since a local transaction aborts
whenever it receives a conflicting coherence request for a line in its read or write sets.
This susceptibility to livelock is well-known [Bobba et al. 2007]. However, the likelihood
of livelocks in such systems and their eventual impact on performance has not been in-
vestigated in depth. Livelocks may persist for a while but eventually get broken due to
varying delays in real-world systems. When this occurs, they may manifest themselves
as degradation in application execution times or system throughput.

Figure 1(a) shows how two transactions may livelock. Both transactions read data
that is eventually written by the other. Executions of the two transactions may in-
terleave such that no progress is made at either thread. However, cyclic dependencies
between concurrent transactions are not the only sources of livelock. A potentially more
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pathological livelock behaviour exists (Figure 1(b)) where multiple read-modify-write
transactions may continually abort each other (i.e., friendlyfire [Bobba et al. 2007]).
The livelock occurs because the aborted transaction issues a conflicting access upon
re-execution, which then aborts the transaction that was allowed to proceed.

The aim of this article is to show that protocols that merely guarantee livelock
freedom may not be the most efficient. The performance impact of livelock mitigation
and avoidance techniques should be looked at in more depth. HTM systems should
incorporate a set of such techniques in a manner that allows resolution of these livelock
conditions as soon as possible and with the lowest associated performance cost. This
article investigates performance implications of a number of existing strategies like
exponential backoff [Moore et al. 2006], serial irrevocability as implemented in GCC
libitm since version 4.7.0, and hourglass [Liu and Spear 2011]. Our study shows that
there is a substantial cost in terms of performance imposed by these strategies. With an
aim to minimize this cost, this article proposes some novel techniques, in hardware and
software, which are well suited to requester-wins HTM designs. Four new techniques
for mitigation of livelocks are presented—two are implemented in software, requiring
only simple interfaces for reading information provided by the hardware, and two are
implemented in hardware with simple core-local additions.

Our analysis of relative merits of these proposed techniques shows that deficiencies
of requester-wins HTMs can be ameliorated effectively for a variety of transactional
workloads. One of our aims is to make system programmers using HTM aware of
the severity of livelocks and the performance cost imposed by various mitigation and
avoidance techniques. This would help them decide what mitigation techniques to
choose. This article also aims to convey to processor architects the importance of simple
hardware mechanisms to mitigate the impact of livelocks. In summary, it sheds light
on the following concerns:

—How severe can livelocks be in requester-wins HTMs?
—What are the performance costs associated with existing livelock mitigation

techniques?
—Can new techniques (hardware-only or hybrid) be designed to reduce performance

degradation while retaining the simplicity of requester-wins HTM?

The rest of this article is organized as follows: Section 2 shows that livelocks
frequently block forward-progress in several transactional workloads running on
requester-wins HTMs. It also shows that existing livelock mitigation and avoidance
strategies (backoff, serial irrevocability, and hourglass) leave a large performance gap
between observed performance and performance achievable by a livelock-free HTM. In
Section 3, we describe in detail four new techniques to improve performance by mit-
igating livelock conditions. Section 4 introduces our experimental methodology, and
Section 5 provides experimental evidence that highlights the efficacy of our new tech-
niques. In Section 6, we discuss about related work. Finally, in Section 7, we conclude
with final thoughts and a summary of insights gathered from this work.

2. MOTIVATION

Our experiments with a variety of workloads, which include the STAMP benchmark
suite [Cao Minh et al. 2008], water and radiosity from SPLASH2 [Woo et al. 1995] and
two microbenchmarks (deque and btree), show that most of them consistently livelock
when running on requester-wins HTM without any livelock mitigation strategy. The
data in Table I lists the workloads and their susceptibility to livelock on a variety of
scenarios. The results have been gathered on a simulated 8-core machine. A suffix -h
after the workload name indicates high contention parameters have been used. A suffix
+ indicates larger datasets. These livelocks occur due to two or more concurrent threads
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Table I. Livelocks in Applications

Live- Operation where Live- Operation where
Application lock livelock occurs Application lock llivelock occurs
Deque Yes Deque access Water Yes Counter increment
Btree Yes Btree insertion Radiosity Yes Counter increment
Genome Yes Hashtable insertion Genome+ Yes Hashtable insertion
Intruder Yes Task queue access Intruder+ Yes Task queue access
KMeans-h Yes Matrix access KMeans-h+ Yes Matrix access
Labyrinth No – Labyrinth+ Yes Vector access
SSCA2 Yes Vector access SSCA2+ Yes Vector access
Vacation-h Yes Counter increment Vacation-h+ Yes Counter increment
Yada Yes Heap removal Yada+ Yes Heap removal

entering a pattern of continuous aborts, eventually preventing any forward progress
as other threads either wait perpetually at a barrier or enter livelock themselves. We
executed each application multiple times with randomized delays added to the main
memory access latency (±5%), so as to create different thread interleavings.

We have also identified the kind of operation that triggers a livelock condition for
each workload. The results in Table I indicate that livelocks are a serious problem
for a variety of common operations in different data structures. Without appropriate
mitigation strategies, in software or hardware, the use of transactions in such a system
may be rendered impractical. This leads us to the next question we attempt to answer:
What are the costs of various existing livelock mitigation strategies?

2.1. A Look at Existing Techniques

We now briefly describe existing software techniques for livelock mitigation and avoid-
ance that can improve overall performance in requester-wins HTMs. We will con-
centrate on three techniques: exponential backoff , introduced as an HTM contention
manager in LogTM [Moore et al. 2006]; serial irrevocability, previously used in soft-
ware TM proposals [Welc et al. 2008; Felber et al. 2010] and now also used in GCC as
the default fallback mechanism upon repeated aborts; and hourglass, which provides
a more relaxed form of serialization than serial irrevocability [Liu and Spear 2011].

Serial Irrevocability. This is a fallback mode in case a hardware transaction fails to
commit after retrying several times. This mode could be chosen because of contention
or hardware resource limitations. The number of retries before entering this mode
is usually configurable. The mode works by aborting any concurrent transactions in
the system through the acquisition of a global multiple-reader-single-writer lock as
a writer. This also ensures that no other transaction in the application can begin
execution, allowing the irrevocable transaction to be executed without interference
from other threads. The algorithm for starting and committing transactions is shown
in Algorithm 1. The call to beginTransaction() returns success after either starting the
transaction in serial irrevocable mode or in the usual hardware-supported TM mode. On
a transactional abort the architectural state is restored and execution is resumed from
the fallback code path. The commitTransaction() routine ensures that the transaction
releases the serial lock if it was running irrevocably. Otherwise, it will execute the
supported ISA instruction to commit a transaction. This implementation resembles
the one that can be found in the new libitm library in GCC to provide TM support.

Randomized Exponential Backoff. Exponential backoff has been used in other
domains as a collision avoidance strategy wherein backoff duration is chosen randomly
from a range of durations that grows exponentially larger as the number of failures
increases. Backoff has the potential to reduce chances of repetitive conflicting pat-
terns that occur. However, it does not guarantee forward progress. Exponential backoff
has been evaluated in the context of contention management options available in
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ALGORITHM 1: Simplified begin and commit transaction function wrappers to
implement serial irrevocability.
void beginTransaction()

while true do
TX BEGIN(offset to fallback path); /* ISA begin instruction */
if serialLockCanRead() == false then /* adds serial lock to the read set */

abortTransaction(); /* there is another thread in irrevocable mode */
else

return; /* execute transaction */
end

fallback path: /* fallback path on abort */
if retryCount < MAX RETRIES then

retryCount++;
if serialLockCanRead() == false then

waitForSerialLockCanRead(); /* wait for irrevocable thread to finish */
end

/* retry transactional execution */
else

break; /* use serial irrevocable mode */
end

end
acquireSerialLockWriter(); /* aborts other transaction */
return; /* execute in serial irrevocable mode */

void commitTransaction()

if serialLockCanRead( ) == false then
releaseSerialLockWriter(); /* this was an irrevocable execution */

else
TX COMMIT(); /* ISA commit instruction */

end
return; /* successfully executed transaction */

software transactional memory [Scherer III and Scott 2005]. However, even though
backoff strategies have also been evaluated in HTM designs [Moore et al. 2006; Bobba
et al. 2007], their impact on performance in HTM systems as prone to livelock as
requester-wins remains unclear.

Hourglass Contention Manager. Liu and Spear [2011] define toxic transactions as
those that have aborted consecutively a number of times due to conflicts. To deal with
these toxic transactions, they propose the hourglass contention manager, where such
transactions try to grab a global token, preventing new or aborted transactions from
starting. This gives the toxic transaction a better chance of committing after acquiring
the token, although it is not guaranteed to commit. This mechanism is less drastic than
serial irrevocability, as it allows transactions that are already running in the system
to proceed when the token is acquired.

2.2. Brief Analysis of Existing Techniques

We now show how these existing techniques perform on a requester-wins HTM with
respect to a well-known reference like LogTM [Moore et al. 2006]. This will allow us to
estimate the gap in performance between such a requester-wins system and a proposal
that implements a more complex strategy. LogTM is a requester-stalls design that
uses a scheme for conservative deadlock avoidance. It introduces a timestamp in all
coherence messages (thereby prioritizing older transactions in the system) and extends
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Fig. 2. Relative performance of existing livelock mitigation techniques relative to LogTM.

the coherence protocol with support for nacks (negative acknowledgements) that allow
transactions to be stalled upon conflict instead of aborting them. The conservative
deadlock avoidance scheme works by keeping a possible cycle bit in each core, set when
a request with an older timestamp is nacked. Once this bit is set, the transaction must
abort as soon as it receives a nack response with an older timestamp.

We have also included a second HTM design point, a lazy-versioning eager-resolution
HTM based on the EL_T design described in Bobba et al. [2007]. It uses the L1 caches
to buffer speculative updates and resolves conflicts eagerly using timestamp priorities
attached to coherence messages—aborting if the remote transaction has higher priority
or responding with a nack (negative acknowledgment) otherwise. Note that like LogTM,
EL_T also requires protocol support for nacks and a mechanism for assigning priorities
to transaction. Thus, these systems turn out to be more complex than requester-wins
designs, where the coherence protocol is not modified.

Figure 2 shows relative performance normalized to LogTM (higher is better), for ex-
ponential backoff , serial irrevocability, a scenario where these two techniques are com-
bined, and hourglass. The relative performance of the EL_T design is also shown. For
reasons mentioned earlier, the LogTM design is more complex than simpler requester-
wins HTMs that will soon be widely available and thus should be considered as an
upper bound on performance achievable by requester-wins designs. As seen in Figure 2,
the EL_T HTM design, which has been included here primarily to add another rele-
vant HTM design point for comparison, performs well under most workloads due to its
ability to prioritize transactions, but presents significant degradation in performance
under high contention. Overall, it turns out to be around 12% worse than LogTM.
Among software techniques, exponential backoff performs 40% worse than the base-
line, being inefficient even under mild contention. Serial irrevocability is a good choice
for uncontended applications like SSCA2. However, when contention is present, its
performance drops significantly. Overall, we see that the performance offered by these
two techniques and their combination is, on average, 27% worse than LogTM for this
set of applications. On the other hand, the hourglass contention manager fares much
better, particularly when contention is present by reducing serialization overheads.
Overall, it achieves 20% less performance than LogTM. In general, we observe that
under high contention there is a marked susceptibility to a much greater degrada-
tion in performance. In our opinion, this observed performance gap is large enough to
merit a search for solutions to close it. Our solutions presented in the following section,
therefore, attempt to do so while retaining the simplicity of requester-wins HTMs.

3. PROPOSED TECHNIQUES TO IMPROVE REQUESTER-WINS HTM DESIGNS

In this section, we describe four novel techniques to improve performance in requester-
wins designs by mitigating pathological scenarios like the ones shown in Figure 1.
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These techniques attempt to bridge the gap in performance highlighted in the previous
section. We first introduce two software-based techniques that are simple to implement
in upcoming HTM designs. Later, we look at two additional techniques that require
simple core-local hardware support, but retain the requester-wins nature of the HTM.

3.1. Serialize on Conflicting Address (SoA)

It has been shown in prior work [Titos-Gil et al. 2011; Negi et al. 2012a] that conflicts
are usually caused by a small number of contended addresses with large fractions of
data accessed by typical transactions seeing no contention at all. Thus, a large number
of transactions in code are prone to see conflicts only on a few addresses. Moreover, it
is not very complicated in hardware to determine this address when a conflict occurs,
since, in requester-wins, HTM designs cores abort when they receive coherence requests
that carry the address. This information could be passed on to the runtime through
interfaces similar to the ones already implemented in production devices. For example,
Intel TSX supplies information about the nature of aborts through the EAX register,
among other things.

Our approach utilizes the additional bits from the RAX register to feed the address
of the conflicting cache line onto the runtime. Using this additional information, the
runtime is able to identify potential hotspots of contended cache lines and rely on locks
to execute one transaction after another, with relatively few transactions requiring a
fallback to the more drastic form of serialization enforced through serial irrevocability.
Algorithm 2 shows the necessary steps to implement this proposal. Note that for the
sake of clarity, in this algorithm, we do not include the necessary checks to have serial
irrevocability (described in Section 2.1).

The approach works by trying to acquire a lock from an array of locks using a hashed
version of the conflicting address as index. If another thread has already acquired
the lock for that address, the current thread waits. This approach allows threads that
are likely not to contend with each other to proceed, whereas threads that conflict
on the same addresses serialize. We only allow each thread to acquire a single lock
to avoid cyclic dependencies. Therefore, the number of locks concurrently in use is
small, lower, or equal than the number of executing threads. This approach is able
to deal quite effectively with livelock scenarios produced by common read-modify-
write transactions, similar to the one shown in Figure 1(b). However, the scenario in
Figure 1(a) would still require serial irrevocability to ensure forward progress.

3.2. Serialize on Killer Transaction (SoK)

Our second proposal is a software technique that stalls restarted transactions until
the offending transaction (i.e., the transaction whose request caused the abort) com-
pletes. As in the previous solution, this is a hardware-assisted software mechanism
that requires the identity of the conflicting thread (a.k.a. killer) to be passed from the
hardware to the runtime at the time of an abort. This scheme is of special interest in
requester-wins systems because restarted transactions are likely to abort their killers
when restarting.

Algorithm 3 shows how the idea is implemented. Before a transaction begins, its exe-
cution, it reads a multiple-reader-single-writer lock from a vector of locks indexed by the
thread identifier. This read operation stalls writers if they try to write the lock. When a
transaction aborts, before it is allowed to restart, it checks whether it has permissions to
write to the killers lock. Note that the killer only releases write permissions on the lock
after it has committed the transaction. If it does not have permissions to write to the
lock, then the killer is still executing the transaction and the aborted transaction must
wait. Cyclic dependencies may arise causing deadlock. The approach avoids this by en-
suring that the wait is deadlock free through a check for potential cycles using a vector
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ALGORITHM 2: Simplified begin and commit transaction function wrappers to im-
plement serialize on conflicting address (SoA).
void beginTransaction()

while true do
TX BEGIN(offset to fallback path); /* ISA begin instruction */
return; /* execute transaction */

fallback path: /* fallback path on abort */
if thread− >has lock is valid then /* already holding one lock */

releaseAddressLockWrite(thread− >has lock); /* avoid cyclic dependencies */
thread− >has lock = invalid

end
address = getConflictingAddress(); /* hardware provides conflicting address */
index = hash(address)
if address is invalid then

continue; /* abort not related to a data conflict, retry */
end
acquireAddressLockWrite(index); /* try to grab lock associated with address */
thread− >has lock = index

/* retry */
end

void commitTransaction()

TX COMMIT(); /* ISA commit instruction */
if thread− >has lock is valid then /* executed with an acquired lock */

releaseAddressLockWrite(thread− >has lock); /* release, others can proceed */
thread− >has lock = invalid

end
return; /* successfully executed transaction */

(killers_vector) that maintains dependencies. Accesses to this vector are protected by a
global lock. This guarantees that only one among a group of conflicting transactions is
allowed to proceed. Since the lock on this structure serializes accesses to it, when cyclic
dependencies exist the design resolves it by allowing the last transaction in a cyclic
dependency chain to detect the condition and avoid a potential deadlock by not waiting
on its killer. Other transactions in the now cycle-free dependency chain wait. This
solution has the advantage of guaranteeing forward progress as long as transactions
can execute in hardware, avoiding the use of the serial irrevocable mode in livelock
scenarios.

Note that a potential corner case may arise in which a transaction is waiting for
a transaction that is not its actual killer, for example, a transaction (Tx-a) aborts
and before checking whether it has to wait, the killer transaction finishes and a new
transaction (Tx-b) starts execution. This is likely to be an uncommon scenario, and it
does not pose any deadlock or starvation problems. Deadlocks cannot occur because
aborted transactions wait on their killers thread identifier, so when the new Tx-b
finishes, the aborted Tx-a will restart. Starvation problems have not been encountered,
but could be easily solved by adding fairness to the lock implementation.

3.3. Delayed Requester-Wins (DRW)

Our first hardware-based design makes conflicting requests wait for a bounded length
of time before applying the requester-wins policy. This technique can be implemented
locally at the core without changing communication protocols or messaging. Basically,
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ALGORITHM 3: Simplified begin and commit transaction function wrappers to im-
plement serialize on killer transaction (SoK).

void beginTransaction()

acquireLockArrayRead(my id); /* acquire local lock for reading, blocks writers */
while true do

TX BEGIN(offset to fallback path); /* ISA begin instruction */
return; /* execute transaction */

fallback path: /* fallback path on abort */
killer id = getKillerID(); /* hardware provides conflicting thread id */
if killer id is invalid then

continue; /* abort not related to a data conflict, retry */
end

clearedForDeadlock = false; /* indicates if has been cleared for deadlock */
while !lockArrayCanWrite(killer id) do /* wait until killer thread is done */

if !clearedForDeadlock then /* ensure we will not deadlock */
acquireGlobalLock(); /* check a vector of adjacencies atomically */
if isCyclePossible(killer id, my id) then /* detects cycles, defined below */

releaseGlobalLock(); /* cannot wait, would deadlock */
break; /* retry */

else
killers vector[my id] = killer id; /* will wait, update vector */
clearedForDeadlock = true; /* do not do the deadlock check again */

end
releaseGlobalLock(); /* deadlock check done */

end
end
acquireGlobalLock();
killers vector[my id] = −1; /* my killer has finished, update vector */
releaseGlobalLock();

/* retry */
end

void commitTransaction()

TX COMMIT(); /* ISA commit instruction */
releaseLockArrayRead(my id); /* release racers waiting on the lock */
return; /* successfully executed transaction */

bool isCyclePossible(int killer id, int my id)

if killers vector[killer id] == −1 then return false; /* killer not waiting, no cycle */
if killers vector[killer id] == my id then return true; /* killer waiting for me, cycle */
return isCyclePossible(killers vector[killer id], my id); /* recursive call */

it attempts to capture the benefits of the requester-stall policy (i.e., resolving conflicts
through stalls rather than aborts) while avoiding the complexity introduced by negative
acknowledgements (nacks) in the coherence protocol. To this end, LogTMs protocol
introduces nacks as well as a special kind of unblock message to inform the directory
that a coherence transaction has failed due to conflicts and should be cancelled, that
is, the coherence state reverted to its original state with no updates to the bit-vector
of sharers. As opposed to LogTM, coherence requests in our Delayed Requester-Wins
(DRW) design always complete successfully—perhaps with some additional latency—
and thus there is no need to extend the protocol with new messages. Delaying coherence
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messages has been explored in the past in the context of memory consistency for
scalable shared-memory multiprocessors [Gharachorloo et al. 1990].

DRW allows the exclusive owner of a cache line to buffer conflicting requests and
thus delay responses until a later point in time. On the requesters side, the cache
miss that resulted in a conflict simply appears to be a longer latency miss, and the
execution naturally stalls at this point until the memory reference completes. Delayed
conflicting requests queued at the exclusive owners cache are considered either when
the transaction ends (commits or aborts) or when an associated timeout expires. DRW
uses timeouts to conservatively break temporary deadlocks situations that may appear
when transactions exhibit circular dependencies. Timeouts are a simple solution to
break cycles, and they can be implemented locally at the core level. On the other
hand, LogTMs deadlock avoidance mechanism requires the addition a global timestamp
(which all threads agree upon) to every coherence request and response, increasing the
size of every network message that traverses the communication fabric.

Transactions with buffered conflicting requests are allowed to execute as long as
they are able to make forward progress. When a transaction with buffered requests
experiences an L1 cache miss, the timer is started. If the cache miss completes within
the timeout latency, the timer is stopped because the transaction has made forward
progress while buffering remote requests, which means that no cycle has been formed
yet. The timer is thus reset to its initial value and will be started again in subsequent
misses. Otherwise, if the timer expires while a local miss is still pending, the buffered
conflicting requests begin to be serviced normally in a requester-wins fashion, trig-
gering an abort and thus breaking any temporary cycle. If the transaction eventually
commits, all conflicts are successfully resolved and the requests are serviced with the
new committed data.

An important aspect in DRW is the timeout latency, that is, the value at which the
timer is started on a cache miss. Ideally, the timer should not expire unless a cyclic
dependency (transient deadlock) has occurred, and similarly it should expire as soon as
the cycle has been formed. In order to set the timer accurately, DRW keeps a table that
associates a different timeout latency to each atomic block of code (indexed by the PC
of the begin-tx instruction). The value used for each atomic block is adaptable, and it
moves between a range of values, in our experiments, from 64 to 1,024 cycles. Commits
that successfully resolve conflicting requests by delaying the response do not update
the value in the latency table. On commits without conflicts, the latency is halved in
order to keep the reaction time to potential deadlocks short when contention is low.
Upon timeout expiration (i.e., on abort), the latency is doubled. In this way, if conflicts
are encountered again after the transaction restarts, a larger window of time is given
to remote transactions so that they have a better opportunity to reach commit (i.e.,
service the buffered conflicting requests) before the local offending transaction aborts
due to the timeout.

3.4. WriteBurst: Buffering of Store Misses (WB)

Buffering transactional stores has been shown to be beneficial in both eager and lazy
systems [Negi et al. 2011; Titos-Gil et al. 2012]. In the case of a requester-wins HTM,
the ability to delay completion of possibly conflicting transactional stores until close
to commit time and then releasing them into the coherent cache hierarchy in a burst
can improve parallelism by reducing the window of time in which a transactional write
to a line may see a conflict. Remote readers can now access lines in a nonconflict-
ing manner and writers that are close to commit have a better chance of acquiring
ownership over the write-set before being aborted by a remote reader. If resources are
sufficient to buffer all store misses until commit, this technique allows for a form of lazy
conflict detection (committer-wins) [Hammond et al. 2004], which provides stronger for-
ward progress guarantees and can enhance concurrency by allowing readers to commit
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before a conflicting writer [Shriraman and Dwarkadas 2009; Titos et al. 2009; Tomić
et al. 2009]. However, unlike the latter lazy systems, in our scheme there is no notion of
committer, because it is always possible for a transaction to abort after it has reached
the commit instruction while it is draining its buffered store misses; but since trans-
actions generally write only a few cache lines, the time required to drain the buffers is
generally short and the requirements to buffer all store misses are not excessive.

Our model implements the idea by utilizing the L1 Miss Status Holding Registers
(MSHRs) to buffer store misses. Stores to exclusively owned lines are store hits and
thus can complete as usual in cache. Our scheme is applied upon stores to shared
lines—upgrade misses—which result in a message sent to the directory requesting the
invalidation of all other privately cached copies. Lines that are absent in the L1 are
prefetched nonexclusively if targeted by a speculative store (the L1 cache uses a write-
allocate policy). Once the line is allocated in L1, the store is buffered in the MSHR and
henceforth treated as an upgrade miss.

Our design leverages the L1 cache entry itself to keep the speculative updates, and
the request is buffered in the MSHR. Since the data is present in the L1 cache in
shared (S) state, only a minor behavioral change in the cache controller is needed to
allow speculative stores that target S state lines to update the cache entry before write
permissions are actually acquired. Per-byte dirty bits in cache to track dirty words are
not needed since no merging with other versions occurs. An MSHR is allocated for the
upgrade miss and the SM bit is set for the entry, but the request for ownership is not
immediately sent to the L2. The issue of these upgrade messages to the L2 directory
is deferred until (a) the transaction reaches the commit instruction, or (b) all MSHRs
are in use. The MSHR keeps track of such entries by maintaining a special Buffered
bit. Subsequent local loads to lines with buffered MSHR entries simply obtain the
data from the cache and add the line to the read set (e.g., set the speculatively read
bit), as usual. Remote load misses get the non-speculative version from the L2 cache,
since the directory remains unaware of the speculative writes at the private cache. If
an invalidation is received for a line with a buffered MSHR, then the transaction is
aborted and all buffered MSHRs are discarded.

For applications with large write sets, the number of MSHRs is likely to be insuffi-
cient to buffer all store misses. When a new store miss finds all MSHR entries occupied,
the design triggers a draining process which sequentially issues buffered upgrade re-
quest for all entries. To prevent drained speculative writes that have completed in
cache to repeatedly expose the transaction against conflicts with restarted readers, our
design incorporates a simple Bloom filter [Bloom 1970] called conflict set signature.
This filter is used to conservatively encode write-set addresses that have seen conflicts
with remote transactions. Note that only store hits or drained misses from the MSHRs
are added to the write set of the transaction (i.e., set the SM bit in cache). Every time a
transaction aborts due to a conflict on a write-set address, the address is added to the
conflict set signature. Subsequent restarts of the transaction will most likely fill up all
MSHRs again, though in this case the conflict set signature will predict those MSHRs
entries whose draining should be avoided for as long as possible. In this way, when
MSHRs are insufficient, store misses to thread-local and noncontended data (contami-
nation misses [Waliullah and Stenstrom 2012]) are drained first, thus minimizing the
aforementioned risk of cross-fire between concurrent writers and readers. The conflict
set signature is always cleared on commit, and thus it only records information about
previous restarts of the same dynamic transaction instance.

3.5. Overview of Existing and Proposed Techniques

Table II shows all of the described techniques with a summary of their proper-
ties and required hardware changes to implement them. Exponential backoff, serial
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Table II. Overview of Techniques and Their Characteristics

Livelock- Requires
Proposal Name Abbr. free? hardware? Hardware Description

E
xi

st
in

g Exponential Backoff B No* No —
Serial Irrevocability S Yes No —
Hourglass H Yes No —
EL T T Yes Yes timestamps and nacks in coherence
LogTM L Yes Yes timestamps and nacks in coherence, possible

cycle detection, priority for older writers

P
ro

po
se

d
S

W Serialize on Address SoA No* Minor provide conflicting address to runtime
Serialize on Killer SoK Yes Minor provide killer id to runtime

H
W Delayed Req-wins DRW No* Yes (local) timeout counters, buffer for requests

WriteBurst WB No* Yes (local) L1 MSHR buffered bit + logic, conflict set sig.
*Serial irrevocability, Serialize on Killer, or Hourglass must be employed to guarantee forward progress.

Table III. Workload Input Parameters and Number of Transactions in Code

Input parameters
Benchmark Small Medium (+) Txs.
Genome -g256 -s16 -n16384 –g512 -s32 -n32768 5
Intruder -a10 -l4 -n2048 -s1 -a10 -l16 -n4096 -s1 3
KMeans-h -m15 -n15 -t0.05 -i n2048-d16-c16 -m15 -n15 -t0.05 -i n16384-d24-c16 3
Labyrinth -i random-x32-y32-z3-n96 -i random-x48-y48-z3-n64 3
SSCA2 -s13 -i1.0 -u1.0 -l3 -p3 -s14 -i1.0 -u1.0 -l9 -p9 3
Vacation-h -n4 -q60 -u90 -r16384 -t4096 -n4 -q60 -u90 -r65536 -t4096 1
Yada -a20 -i 633.2 -a10 -i ttimeu10000.2 6

Deque 100K ops., 1K dummy work 1
Btree 100K ops., 20K preloads, 25% ins. 2
Water 64 molecules 7
Radiosity -batch 32

irrevocability, and hourglass do not require any kind of hardware additions, our pro-
posed software-based techniques require minor changes to provide core local infor-
mation to the runtime, while our proposed hardware-based techniques need simple
hardware additions that are core-local and retain the requester-wins nature of the
HTM. Both LogTM and EL_T require coherence changes that affect communication
between cores. Most proposed techniques can experience livelock conditions due to
contention, so they should be executed in conjunction with a contention livelock-free
technique like serial irrevocability, serialize on killer, or hourglass.

4. SIMULATION ENVIRONMENT AND METHODOLOGY

4.1. Workloads

We use the STAMP benchmark suite as workloads to drive our experiments. These
workloads provide significant diversity in behavior and are expected to be good
examples of transactional use cases and programming style. We choose to exclude
the application bayes from our analysis due to large variability in execution times,
which are very sensitive to random interleavings. In addition to STAMP, we include
four workloads that have been used in a number of TM studies in the past, water and
radiosity from SPLASH2 [Woo et al. 1995], and two microbenchmarks—deque and
btree. Table III lists the command line parameters used in experiments in this article.
We simulate both small and medium datasets for STAMP workloads, following the
recommended input parameters [Cao Minh et al. 2008].
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Table IV. Architectural and System Parameters

Parameter Values
Cores 8 in-order 2GHz ×86 cores, 1 IPC for non-memory instructions
L1 I&D Caches 64KB 8-way, private, 64B lines, 1-cycle hit latency
L2 Cache 8MB 16-way, shared, 64B lines, 12-cycle uncontended hit latency
L2 Directory L2-Directory Full-bit vector sharer list; 6-cycle latency
Memory 4GB, 100-cycle latency DRAM lookup latency
Interconnect 2D Mesh, 64-byte links, 1-cycle link latency
Exponential Backoff Randomized exponential backoff with saturation after n steps.

Backoff range [1..2n] where n is 8; Backoff multiplier factor: 117
Hourglass 4 retries before becoming toxic (best observed results)
Serial Irrevocability 8 maximum number of retries before executing in serial mode
Serialize on Address The rw-lock implementation was stripped from the Linux kernel and is
Serialize on Killer very similar to the one used in GCC to implement serial irrevocability.
Delayed requester-wins Timeout latencies (min/max): 64/1024 cycles
WriteBurst Number of MSHR to buffer store miss information: 32

4.2. Simulation Environment

All experiments in this article have been performed using the GEM5 simulator [Binkert
et al. 2011]. TM support that had been stripped from Ruby [Martin et al. 2005] upon
integration into GEM5 has been plugged back in for the purposes of this article. The
setup uses the timing simple processor model in GEM5. The memory system is modeled
using Ruby. A distributed directory coherence protocol on a mesh-based network-on-
chip is simulated. Each node in the mesh corresponds to a processing core with private
L1 instruction and data caches and a slice of the shared L2 cache with associated direc-
tory entries. Table IV describes key architectural parameters used in the experiments,
as well as parameters used in the evaluated livelock avoidance mechanisms. For each
workload-configuration pair, we gathered average statistics over 5 randomized runs
designed to produce different interleavings between threads. For LogTM, we used the
hybrid resolution policy that prioritizes older writers by allowing their write requests
to abort younger transactions [Bobba et al. 2007].

To isolate our study from the effects of aborts caused by hardware resource limi-
tations (e.g., cache capacity), our design includes an ideal transactional victim cache
which is able to hold any number of speculatively modified cache lines when they are
evicted from the L1 data cache while a transaction is executing. This allows transac-
tions with large footprints to commit entirely in hardware, without having to resort to
software fallback mechanisms. When a memory reference inside a transaction misses
in the L1 cache but hits in the transactional victim cache, a penalty of only one extra
cycle over the L1 hit time is applied. The transactional victim cache is flushed on abort
and its contents drained to the L2 cache on commit. Evictions of speculatively read
lines are also tolerated by our design, which uses perfect read signatures to track read
sets. Such lines are not placed in the transactional victim cache and so they need to be
fetched back from the L2 if need be.

Table V shows usage of the Victim Cache (VC) for the simulated workloads. We do
not show data for workloads that do not make use of the victim cache during their
execution. Even though we use an unbounded victim cache, as can be seen in the table,
the number of lines that go into the victim cache is very small for all the workloads, with
the exception of labyrinth. Half of the workloads do not use the victim cache at all, and
for those that use it, the maximum occupancy reached by the victim cache stays below
20 cache lines except in labyrinth. Moreover, the percentage of transactions that commit
without using the victim cache at all is high. Thus, designs that have replacement
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Table V. Victim Cache Statistics for Evaluated Workloads on Committed Transactions
Numbers have been averaged over 5 simulated runs with 8 cores using the exponential backoff configuration.

Application Max. Occupancy Avg. Occupancy %Commits without VC
Btree 1 1.00 99.99
Genome+ 1 1.00 99.99
Labyrinth 32 6.84 66.20
Labyrinth+ 433 378.98 56.00
Vacation-h 1 1.00 99.99
Yada 9 1.58 96.20
Yada+ 19 1.65 95.50

policies with some priority for transactional data, or that incorporate transactional
bookkeeping in deeper levels of the memory hierarchy (private L2 caches) will likely
be able to execute the transactions defined in these workloads entirely in hardware.

4.3. HTM Support in the Coherence Protocol

We have introduced minor changes in one of several coherence protocol implementa-
tions available in GEM5. The primary intent is to make a few simple changes that
permit buffering of speculative updates in the private L1 cache without maintaining
an undo-log. This brings the model as close in function as possible to requester-wins
HTM implementations that may soon be available. We extended a typical MESI direc-
tory protocol available in the GEM5 release to support silent replacements of lines in
E (exclusive) state. This is implemented via yield response messages that are sent by
a former L1 exclusive owner to the L2 directory in response to a forwarded request for
a line that is no longer present (after it was silently replaced). Through this feature,
the protocol is then able to integrate speculative data versioning in private L1 caches
at no extra cost. When a transaction aborts, it simply flush-invalidates all specula-
tively modified lines in its L1 data cache, which will eventually appear as silent E
replacements to the directory. When it commits, it makes such updates globally visible
by clearing the Speculatively Modified (SM) bits in L1 cache. To preserve consistent
nonspeculative values, transactional writes to M-state lines that find the SM bit not
asserted must be written back to the L2 cache. These fresh speculative writes are per-
formed without delay in L1 cache while a consistent copy of the data is simultaneously
kept in the MSHR until the writeback is acknowledged (required in case of forwarded
requests). Furthermore, transactional exclusive coherence requests (TGETX) must be
distinguished from their nontransactional counterparts (GETX) both by L1 cache and
L2 directory controllers. For TGETX, the L1 exclusive owner must send the data to
both the L1 cache requester and the L2 cache (in order to preserve pretransactional
values), whereas for GETX requests it is sufficient with a cache-to-cache transfer, and
in these cases the L2 directory expects no writeback.

4.4. Experiments and Metrics

We use execution time breakdowns to identify possible sources of overhead and compare
them across the studied mechanisms. Execution times account for memory system
effects by allowing the cache hierarchy and locality characteristics of the application
to affect the metric. Execution breakdowns are broken down into several components
listed in Table VI based on the number of cycles spent performing the corresponding
activity in all the cores. Some components are present only in certain configurations.
Tables of results also show different statistics depending on the evaluated proposal,
and include abort rates which indicate the fraction of transaction executions that result
in aborts. This metric, when looked at in conjunction with execution time, provides a
better picture of the efficacy of various contention and livelock mitigation techniques
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Table VI. Various Components in Execution Time Breakdown Plots

Component Abbrev. Description
Non-transactional non-tx Time spent execution non-transactional code
Barrier barrier Time spent waiting at barriers
Useful-Transactional useful Time spent executing transactions that commit
Wasted-Transactional wasted Time spent executing transactions that abort
Waiting in serial lock wait-serial Time spent waiting for an irrevocable transaction to complete
Waiting in address lock wait-address Time spent waiting for a conflicting transaction on the same

address to complete
Waiting for killer wait-killer Time spent waiting for our killer transaction to complete
Serial irrevocable serial Time spent executing an irrevocable transaction
Token usefull token Time spent in usefull transactions with the token (hourglass)
Backoff backoff Time spent performing exponential backoff
Stall stall Time spent waiting for a memory request to complete in

LogTM, or by the delayed requester-wins conflict resolution

Fig. 3. Relative performance of existing livelock mitigation techniques for 8 core runs (L: LogTM, B: Expo-
nential backoff, S: Serial irrevocable, BS: Exponential backoff and serial irrevocable, H: Hourglass).

evaluated. Finally, we also use execution times for different techniques normalized to
single-thread execution time to compare their scalability.

5. EVALUATION

We first evaluate existing techniques in depth to identify possible sources of overhead.
Later, we evaluate our proposed software-based and hardware-based techniques. Fi-
nally, we conclude with a scalability comparison for the evaluated proposals.

5.1. Evaluation of Existing Techniques

Figure 3 compares the performance (execution times) of the existing techniques: ex-
ponential backoff (B), serial irrevocability as implemented in GCC (S), a design that
combines both exponential backoff and serial irrevocability (BS), and hourglass (H).
LogTM execution times have been used as the basis for normalization, with the break-
down for the configuration shown using the bar marked L. In BS, serialization occurs
when a transaction fails to commit even after having retried 8 times applying an
exponential backoff. For a description of breakdown components, see Table VI.

Serial irrevocability imposes a performance cost because any parallelism among
concurrent transactions is precluded. Frequent entries into this mode may result in
severe performance degradation. Exponential backoff alone performs badly too. From
the figure, it is clear that when contention is present (e.g., in applications like deque,
btree, genome, intruder and yada), just relying on serial irrevocability or exponential
backoff can result in performance degradation ranging from 20% to about 40% in
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Table VII. Key Metrics for Existing Techniques

%Saturation %Irrevocable/Token %Token aborts %Abort Rate
Application B S BS H H B S BS H
Deque 0.12 67.71 0.19 43.45 19.7 36.2 95.2 65.7 78.0
Btree 4.74 11.83 0.62 8.38 20.6 14.7 65.9 25.0 44.5
Water 0.00 1.19 0.00 2.08 6.3 2.2 13.9 2.1 16.8
Radiosity 0.47 0.12 0.00 0.05 26.7 0.4 2.4 0.5 1.2
Genome 2.52 1.39 0.15 0.38 44.8 4.6 16.3 6.4 8.3
Genome+ 3.51 0.70 0.06 0.17 34.5 2.5 8.4 3.1 3.5
Intruder 0.61 9.45 0.08 1.31 79.9 14.6 59.8 18.3 44.6
Intruder+ 1.05 9.92 0.07 2.32 53.9 10.6 60.9 14.2 38.1
KMeans-h 0.00 8.59 0.00 3.61 29.3 6.0 53.0 7.1 31.2
KMeans-h+ 0.18 6.29 0.04 4.52 34.9 7.3 43.6 11.3 38.8
Labyrinth 3.65 18.37 1.74 7.88 36.9 34.5 71.9 50.0 61.9
Labyrinth+ 0.95 0.42 2.85 8.89 37.3 30.4 32.0 47.2 63.2
SSCA2 0.00 0.08 0.00 0.12 0.0 0.1 2.2 0.1 1.1
SSCA2+ 0.00 0.03 0.00 0.06 0.3 0.1 0.9 0.1 0.6
Vacation-h 8.04 0.87 0.00 0.46 1.1 2.1 12.3 1.7 5.0
Vacation-h+ 11.83 0.41 0.01 0.17 0.0 0.8 6.8 1.2 1.8
Yada 33.86 46.42 12.26 13.72 34.8 45.3 90.9 71.9 62.8
Yada+ 90.17 29.24 5.40 10.42 32.6 80.9 83.1 52.6 55.7

intruder, 2–2.5× in btree and several times (3–4×) in yada. Even a small portion
of time in serial irrevocable mode results in significant time spent by other threads
waiting for the irrevocable execution to finish (wait-serial). This overhead is expected
to become worse as thread count increases. Though the combination of exponential
backoff and serial irrevocability (BS) performs marginally better, all three livelock
mitigation techniques perform comparably. Hourglass contention manager shines here
being 6.8% better than BS. However, note that a performance gap of 26.8% can be seen
between the baseline (LogTM with conservative deadlock avoidance using timestamp
priorities) and the best existing technique (hourglass).

Table VII shows some key metrics for different existing techniques evaluated in this
section. The column %Saturation indicates the percentage of backoff events where
backoff had saturated. Note that we use exponential backoff where the range of pos-
sible backoff periods stops growing after a certain number of consecutive aborts. We
find that yada and btree experiences this event often, a sign of contention being persis-
tent, and that larger backoff periods might be beneficial in this particular workloads.
The columns under the head %Irrevocable/Token indicate the percentage of transac-
tions that ran irrevocably (as a fraction of the total number of committed transactions)
when using serial irrevocability as fallback (configurations S and BS), or the percent-
age of transactions that acquired the global token when using hourglass contention
management (configuration H). The last three columns under the head %Abort Rate
show the percentage of aborts encountered in each configuration as a fraction of the
total number of transaction starts (including restarts)–aborts/(aborts+commits). We
observe that high-contention workloads running on configuration S (without back-
off ) enter in irrevocable mode far more often than when using it in conjunction
with backoff (configuration BS). This is expected because backoff preempts immediate
restart of transactions that are likely to abort their killers. Thus the use of backoff is
recommended, specially in contended scenarios. Though hourglass outperforms all
other techniques, it is susceptible to performance degradation under contention, partic-
ularly if transactions are large. The column %Token aborts indicates the abort rate for
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Fig. 4. Relative performance of proposed software-based techniques for 8 core runs (L: LogTM, A: Serialize
on conflicting address (SoA), K: Serialize on killer transaction (SoK)).

transactions that executed while holding the hourglass token, a large number of aborts
in this mode may cause a penalty similar or even larger than that of serial irrevocability.

5.2. Evaluation of Proposed Techniques

5.2.1. Software-based Techniques. Figure 4 compares the performance of software-based
techniques proposed in this article. The numbers are again normalized using LogTM
as a baseline. This allows us to compare visually the improvements over techniques
discussed in the previous section. Data has been presented for two configurations—
Serialize on conflicting Address (SoA) and Serialize on Killer transaction (SoK).

We notice modest improvement in overall performance using either technique over
existing techniques (shown in Figure 3). SoK performs the best, reducing the perfor-
mance gap from the baseline to 15.3%, being slightly better than SoA. However, we see
that both these techniques suffer when contention is high and transactions are large.
This is evident from the execution times for btree and yada. In such cases, these tech-
niques turn out to be substantially slower (1.6×–2.5×) than LogTM. Note that in the
case of btree SoA performs better than SoK, while the opposite trend is seen in the case
of yada. In btree, there is some overlap expected among conflicting addresses because a
tree is being accessed. This is, however, not the case in the mesh-refinement algorithm
used by yada. Previous work [Negi et al. 2012a] has shown that yada typically has a
very large number of conflicting addresses that do not show much repetition. Moreover,
contention in yada tends to occur among groups of threads working on the same region
of memory. Hence, SoK, with its per-thread locks, fits this case well.

Table VIII shows statistics for the evaluated software-based techniques. From the ta-
ble, we can see that, in fact, the percentage of transactions executed in serial irrevocable
mode is substantially lower in SoA when compared to existing techniques. The column
labeled %Aborts cycle, shows the percentage of aborted transactions that are allowed
to restart without waiting on the killer transaction because a cyclic dependence would
occur otherwise. Note that this value stays relatively low for all workloads, keeping
additional aborts that might occur due to nonserialized transactions low. In fact, the
abort rates for yada in SoK are substantially lower than in LogTM; however, LogTM
still performs better because, with large transactions, the overheads of serializing grow
rapidly.

SoA significantly reduces the number of transactions that run in irrevocable mode
when compared to existing techniques, which translates into lower overheads waiting
for the serial lock. This is evident upon comparing numbers in Table VIII to those
in Table VII. Time waiting on transactions executing on the same conflicting address
is generally small (wait-address), although this overhead remains visible in intruder
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Table VIII. Key Metrics for Software-based Proposed Techniques

%Irrevocable %Aborts cycle %Abort rate
Application SoA SoK SoA SoK LogTM
Deque 0.00 3.98 44.1 31.2 9.5
Btree 0.29 3.08 20.0 22.2 7.9
Water 0.00 4.38 2.1 3.7 0.6
Radiosity 0.01 8.06 0.9 0.7 0.5
Genome 0.45 2.61 8.8 4.0 3.1
Genome+ 0.15 2.28 3.7 1.7 1.1
Intruder 0.78 6.96 25.7 23.1 15.4
Intruder+ 0.26 6.52 17.5 16.4 11.8
KMeans-h 0.00 11.46 8.7 4.5 0.2
KMeans-h+ 0.04 6.03 16.1 6.1 0.2
Labyrinth 0.77 0.27 32.2 26.4 27.9
Labyrinth+ 0.00 0.90 28.0 23.6 30.2
SSCA2 0.00 2.55 0.2 0.1 0.0
SSCA2+ 0.00 3.39 0.1 0.1 0.0
Vacation-h 0.00 0.00 1.7 0.9 0.6
Vacation-h+ 0.00 0.00 0.9 0.5 0.2
Yada 5.13 1.42 50.4 14.8 32.3
Yada+ 2.86 1.26 36.5 10.3 18.1

Fig. 5. Relative performance of delayed requester-wins technique for 8 core runs (L: LogTM, D: Delayed
req-wins with serial irrevocability, DK: Delayed req-wins with SoK).

and btree because these are benchmarks with a larger number of read-modify-write
transactions that conflict on a small set of addresses.

5.2.2. Hardware-based Techniques. Figure 5 shows relative performance of two new live-
lock mitigation techniques based on the Delayed-Requester-Wins (DRW) mechanism.
Since DRW does not guarantee forward progress, we must have some form of software
fallback to break persistent livelocks. The first DRW-based scheme (bar D in Figure 5)
uses serial irrevocability as fallback, while the second scheme uses SoK as fallback (bar
DK). A version with hourglass as fallback was evaluated yielding lower performance
(results not included); serial irrevocability and SoK are more efficient at bypassing
short hotspots of high contention.

Performance differences between the two techniques are most noticeable in appli-
cations with large transactions or with moderate to high contention. Notice the large
wait time due to serial irrevocability in yada. The drastic improvement in performance
over serial irrevocability when using SoK is the result of improved parallelism be-
cause only those transactions that actually conflict wait. Other contended applications
like intruder and genome obtain the best results seen so far, being only a few percent
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Table IX. Key Metrics for Delayed Requester-Wins in Conjunction with Serial Irrevocability and SoK

%Commits with
timeout %Unexpired timers %Irrevocable %Abort Rate

Application DRW-S DRW-SoK DRW-S DRW-SoK DRW-S DRW-S DRW-SoK
Deque 32.72 21.49 71.85 74.54 0.09 24.0 13.9
Btree 12.84 9.44 49.67 46.58 0.27 24.7 15.3
Water 0.89 2.67 84.21 91.43 0.00 1.5 0.9
Radiosity 0.30 0.22 96.27 96.71 0.01 0.6 0.4
Genome 1.24 0.71 49.19 47.30 0.28 6.5 3.0
Genome+ 0.57 0.29 52.12 48.56 0.07 2.5 1.3
Intruder 12.70 11.25 69.87 71.41 0.16 16.8 10.8
Intruder+ 9.10 7.89 75.57 76.54 0.09 12.3 8.0
KMeans-h 4.29 2.72 73.34 65.21 0.00 1.7 1.8
KMeans-h+ 4.21 3.66 79.45 78.23 0.00 1.3 1.2
Labyrinth 0.58 0.29 35.29 50.00 1.17 34.7 26.3
Labyrinth+ 0.14 0.00 25.00 0.00 0.28 31.8 24.5
SSCA2 0.17 0.10 98.99 100.00 0.00 0.0 0.0
SSCA2+ 0.07 0.05 99.69 99.07 0.00 0.0 0.0
Vacation-h 0.60 0.20 84.83 90.91 0.00 1.4 0.9
Vacation-h+ 0.22 0.05 72.58 68.75 0.00 0.5 0.3
Yada 11.73 1.71 42.36 26.83 6.12 54.6 13.9
Yada+ 6.34 1.37 39.72 30.80 2.89 38.7 10.0

behind LogTM. In yada, DRW helps some transactions to commit that would otherwise
have to abort, while SoK ensures that aborted transactions do not abort their killers
upon restart. Btree also benefits substantially from DRW, experiencing a considerable
performance boost with respect to previous evaluated techniques. Table IX shows the
percentage of commits that had active timeouts, which delayed (buffered) conflicting
requests from remote cores instead of aborting the local transaction. Intruder, yada,
and btree benefit substantially from this fact. The head %Unexpired timers shows that
applied timers tend to be cancelled before they expire, allowing the transaction to con-
tinue execution. Table IX also shows that abort rates obtained for DRW-SoK, which are
considerably lower with respect to other proposals across all workloads.

The use of timestamp priorities and reductions in wasted execution time due to the
possibility to retry conflicting accesses (effectively stalling a lower priority transaction)
still allows LogTM to perform significantly better under contention. However, even
though DRW does not use additional coherence messages or timestamps, it has an
average performance close to that seen in LogTM. Using SoK as fallback, we observe a
performance gap of about 12.1%, which can be largely attributed to the results obtained
in yada and btree, as other workloads perform considerably closer to LogTM.

Figure 6 presents an execution time breakdown for the WriteBurst technique. Two
versions have been evaluated: One with serial irrevocability (bar W), and one with SoK
(bar WK) as fallback mechanism to guarantee forward progress. Again, a version with
hourglass as fallback was evaluated (not shown) delivering slower performance.

In workloads where buffering stores can hide conflicts between transactions—by
shrinking the window of time in which a transaction is susceptible to abort due to
remote readers—using serial irrevocability proves to be slightly better (btree, genome,
and intruder). This is due to the fact that transactions can restart immediately as
long as they do not reach the threshold to execute in irrevocable mode, and under low
contention, this is beneficial. However, if contention is still present, serial irrevocability
again imposes a severe performance penalty, see yada. When using WriteBurst in
conjunction with SoK as a fallback mechanism, there is a slight penalty in applications
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Fig. 6. Relative performance of the WriteBurst technique for 8 core runs (L: LogTM, W: WriteBurst with
serial irrevocability, WK: WriteBurst with SoK).

Table X. Key Metrics for the WriteBurst Mechanism in Conjunction with Serial Irrevocability and SoK

Max. Stores
Buffered

Avg. Stores
Buffered %Irrevocable %Abort Rate

Application WB-S WB-SoK WB-S WB-SoK WB-S WB-S WB-SoK
Deque 3 3 2.89 2.89 0.04 27.3 25.8
Btree 11 12 3.42 3.42 2.40 40.5 24.7
Water 2 2 1.86 1.87 0.00 1.9 1.8
Radiosity 18 15 1.10 1.11 0.00 0.8 0.6
Genome 12 11 1.68 1.72 0.02 4.8 3.0
Genome+ 12 11 1.51 1.52 0.02 2.1 1.3
Intruder 17 17 2.21 2.19 0.02 13.0 12.0
Intruder+ 19 20 1.79 1.78 0.01 10.5 8.5
KMeans-h 2 2 1.69 1.69 0.00 3.9 3.5
KMeans-h+ 2 3 1.73 2.38 0.00 2.9 3.1
Labyrinth 32 32 7.17 7.15 0.58 30.7 27.1
Labyrinth+ 32 32 13.46 13.56 0.14 26.8 26.9
SSCA2 2 2 1.15 1.14 0.00 0.2 0.1
SSCA2+ 2 2 1.10 1.10 0.00 0.1 0.1
Vacation-h 8 8 1.57 1.57 0.00 1.1 0.8
Vacation-h+ 5 5 1.48 1.48 0.00 0.4 0.4
Yada 31 32 6.13 6.84 3.13 42.4 14.9
Yada+ 32 32 6.26 6.66 1.93 31.5 10.4

where restarted transactions may now not conflict due to the WriteBurst mechanism.
However, it proves to be much more effective for large transactions with moderate to
high contention (yada). Overall, this approach is only 10.5% slower than LogTM.

Table X provides information about the maximum and average number of buffered
stores per committed transaction. As can be seen, labyrinth and yada exhausted the
buffer capacity for some transactional executions, and maintain a relatively high aver-
age number of buffered stores. Btree, radiosity, Intruder, and genome also have a higher
number of maximum stores buffered when compared to the rest of the workloads, but
their average usage is low. Serial irrevocability, as observed in the breakdown, is only
used by btree and yada, where contention is still an issue.

This high usage of the buffers in labyrinth and yada may imply that these workloads
can benefit from larger buffering capacity and that they would also be sensitive to a
lower number of MSHRs. We ran experiments using WB-SoK with 16 and 64 MSHRs
and observed that only labyrinth and yada experienced changes in performance
compared to the results gathered using 32 entries. When 16 MSHRs are available,
labyrinth and labyrinth+ see performance drops of 7.3% and 5.4%, while yada and
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Fig. 7. Relative performance of 8 core runs using existing, software, and hardware techniques with respect
to single-threaded execution.

yada+ drop by 9.0% and 5.2%, respectively. On the other hand, when the number
of registers is set to 64, yada and yada+ improve by 5.0% and 6.8%, respectively,
while both labyrinth and labyrinth+ show roughly the same performance levels of the
32-MSHR configuration. We observed that the substantial improvement seen in yada
is due to its maximum usage of 60 MSHR, whereas labyrinth uses around 40 entries.

5.3. Performance Overview of Proposed Techniques

In this section, we compare relative performance of the introduced techniques in soft-
ware and hardware. Figure 7 compares scalability for 8-core runs using a subset of the
configurations we have discussed earlier.

We show the best performing existing technique, hourglass, which has significant
drops in performance under contended scenarios, but can be a good choice when con-
tention is low. Overall, the proposed hardware schemes perform better than their
software counterparts, this is specially noticeable in contended applications like btree,
intruder, and yada. In applications where contention is mild like in water, radiosity,
SSCA2, or vacation, SoA and SoK present competitive performance, being on par or
even slightly better than hardware proposals (e.g., SSCA2). LogTM, plotted as the
last bar, performs the best, especially under contention (btree and yada), where times-
tamp priorities become more useful, though the proposed schemes can achieve similar
performance for most workloads.

This comparison highlights the need for basic livelock mitigation techniques in hard-
ware (specially in contended scenarios), if not full-fledged forward progress guarantees
which may be better implemented in software. As long as hardware techniques can
effectively limit the need for software intervention, the performance cost associated
with providing strong progress guarantees in software would be manageable.

6. RELATED WORK

HTM proposals in the literature have typically provided forward progress guarantees
using transaction priorities (e.g., through timestamps) [Moore et al. 2006; Bobba et al.
2007] or lazy contention management [Hammond et al. 2004; Tomić et al. 2009; Negi
et al. 2012b]. However, the simplicity with which requester-wins HTMs [Click 2009; In-
tel Corporation 2012; Chung et al. 2010] can be incorporated in hardware has resulted
in such HTMs being the first ones to be widely accessible. As we have shown in this ar-
ticle, such designs tend to be susceptible to performance degradation through transient
or persistent livelocks. To the best of our knowledge, prior work has only noted this
fact in passing, without presenting in-depth analyses of its performance implications
or evaluating solutions that enhance forward-progress properties of requester-wins
HTMs.
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However, we would like to point out the connection between livelock mitigation and
contention management. Extensive research into management of conflicting transac-
tions has been undertaken in both HTM and STM. Designs that manage contention
better are also less susceptible to livelock. In the area of STM, a variety of ways in
which transactional conflicts could be handled have been evaluated. STM implemen-
tations allow great freedom in contention management policy design. Scherer III and
Scott [2005] have evaluated a range of such options—Polite, which employs exponential
backoff in a manner similar to our implementation; Karma and Eruption, which prior-
itize transactions based on the amount of work they have done; Kindergarten, where
transactions accessing an object of contention take turns; and Polka, where exponen-
tial backoff and Karma are used together. Prioritized contention management policies
(like Karma), with appropriate instrumentation in code, are relatively simple to im-
plement in software. However, hardware implementations necessitate mechanisms to
award and transport such priorities among processing units and, more importantly,
mechanisms to notify and respond to decisions based on their use. The key attraction
of requester-wins HTM in hardware design is the lack of any such requirement. The
cache hierarchy and protocols do not change, changes local to processing units being
sufficient to determine and rectify conflicts.

Entry into the serial irrevocable mode in GCC aborts all concurrent transactions and
prevents new ones from starting. Toxic transactions [Liu and Spear 2011] present a less
drastic way—hourglass—to allow transactions that repeatedly abort due to conflicts to
complete successfully. The mechanism requires such transactions to become toxic, that
is, prevent new ones from being scheduled (or re-executed upon abort) by acquiring a
token. This gives a chance to concurrent nonconflicting transactions to complete suc-
cessfully. We have included this strategy in this article, showing that is quite effective,
being the best contendant amongst existing techniques.

Dolev et al. [2008] have proposed CAR-STM, which provides, in software, two meth-
ods to mitigate the adverse effects of conflicts. It maintains, for each processing core, a
queue of transactions to be serialized on that core. An aborted transaction is resched-
uled by queueing it on the conflicting core. In addition to this mechanism, a predictive
scheduling approach assigns transactions to cores with which they are likely to con-
flict. However, this mechanism views transactions as tasks to be scheduled and thus
imposing scheduling overheads particularly in high contention scenarios. Another pre-
dictive approach is used in the Shrink contention manager described in Dragojević
et al. [2009].

In the context of HTMs, prior work [Bobba et al. 2007] has identified several patholog-
ical conditions that can beset certain contention management policies. Requester-wins
systems are inherently eager conflict resolution systems and suffer from pathologies
that such systems are susceptible to. However, the absence of transaction priorities
swaps starvation problems for increased risk of livelocks. For example, the requester-
wins design treats reads and writes at an equal footing, thus avoiding the problem
of starving readers/writers. However, the livelock risk, termed friendly fire in Bobba’s
paper, is present. Our article aims to estimate the likelihood of this risk and presents
some new techniques to mitigate or avoid it.

Hybrid approaches have also been investigated. In particular, Hybrid-NOrec
[Dalessandro et al. 2011] describes the implementation of a hybrid TM system on best-
effort HTM. The design allows software and hardware transactions to coexist, although
concurrency among such transactions is restricted rather severly. High-performance
variants of this approach require the ability to issue nontransactional loads from within
a transactional context.

Further research in HTM has investigated the use of reactive and proactive schedul-
ing strategies [Yoo and Lee 2008; Blake et al. 2009] to enhance parallelism and limit
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speculation when it is likely to fail. These proposals track conflicts between transactions
and use this information in the future to predict contention and decide whether or not
to stall a transaction when a transaction-begin primitive is encountered. Dependence-
aware TM [Ramadan et al. 2008] tracks dependencies between concurrent transactions,
supplying uncommitted data to dependent transactions and ensuring that commits oc-
cur in proper order. Cyclic dependencies are broken by aborting one of the transactions
when a cycle is detected. These proposals tend to rely on HTMs that are more sophis-
ticated and significantly more complex than a requester-wins design and, hence, are
unlikely to be adopted soon by hardware vendors.

7. CONCLUSIONS

In this section, we summarize key results and insights gathered during this study.
These can be categorized under two heads: For Programmers and For Architects.

7.1. For Programmers

Livelocks present a real and rather severe problem in requester-wins best effort HTMs.
Even when cyclic dependencies may not arise among transactions, performance degra-
dation due to transient livelocks may still occur because of repeated conflicts between
an aborter and a restarted abortee. Exponential backoff is quite effective at mitigating
adverse effects of livelocks. However, it does not guarantee freedom from livelocks.
It must be used in conjunction with serial irrevocability to ensure forward progress.
However, the TM runtime should not be very eager when deciding to enter serial irre-
vocability, as this can potentially create pathological situations wherein applications
with little contention may show severe performance degradation due to frequent seri-
alization because of the contention created by the serialization mechanism itself. As
we show in this article, serialization should be done in stages. Initially, using less se-
vere techniques like Hourglass, SoA, or SoK, permit much greater levels of parallelism
before falling back to serial irrevocability.

7.2. For Architects

Bare-bones requester-wins HTM support, while being a good, low-complexity way of
introducing practical TM in the real world is not safe from livelocks even in lightly con-
tended scenarios. Although software strategies can prevent livelocks from precluding
forward progress, they can also impose a performance penalty which in several cases
is rather steep. Simple hardware mitigation strategies are quite useful in this context.
By delaying conflict resolution, the architectural simplicity of requester-wins HTM de-
signs can be retained while simultaneously mitigating the possibility of livelock and
overheads associated with it. As we have shown in this study, this can be easily done by
deferring processing of conflicting coherence requests (DRW) or delaying when writes
are injected into the memory hierarchy (by buffering store misses). While such schemes
may not guarantee freedom from livelock, they prove to be quite effective in avoiding
them in many transactional use cases.
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