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Abstract—Hardware transactional memory implementations
are becoming increasingly available. For instance, the Intel
CoreTM i7 4770 implements Restricted Transactional Memory
(RTM) support for Intel Transactional Synchronization Exten-
sions (TSX). In this paper, we present a detailed evaluation
of RTM performance and energy expenditure. We compare
RTM behavior to that of the TinySTM software transactional
memory system, first by running microbenchmarks, and then
by running the STAMP benchmark suite. We find that which
system performs better depends heavily on the workload
characteristics. We then conduct a case study of two STAMP
applications to assess the impact of programming style on
RTM performance and to investigate what kinds of software
optimizations can help overcome RTM’s hardware limitations.

I. INTRODUCTION

Transactional memory (TM) [1] simplifies some of the

challenges of shared-memory programming. The responsi-

bility for maintaining mutual exclusion over arbitrary sets

of shared-memory locations is devolved to the TM system,

which may be implemented in software (STM) or hardware

(HTM). TM presents the programmer with fairly easy-to-

use programming constructs that define a transaction — a

piece of code whose execution is guaranteed to appear as if

it occurred atomically and in isolation.

The research community has explored this design space

in depth, and a variety of proposed systems take advantage

of transaction characteristics to simplify implementation

and improve performance [2]–[5]. Hardware support for

transactional memory has been implemented in Rock [6]

from Sun Microsystems, Vega from Azul Systems [7], and

Blue Gene/Q [8] and System z [9] from IBM. Haswell is

the first Intel product to provide such hardware support.

Intel’s Transactional Synchronization Extensions (TSX) al-

low programmers to run transactions on a best-effort HTM

implementation, i.e., the platform provides no guarantees

that hardware transactions will commit successfully, and

thus the programmer must provide a non-transactional path

as a fallback mechanism. Intel TSX supports two software

interfaces to execute atomic blocks: Hardware Lock Elision

(HLE) is an instruction set extension to run atomic blocks

on legacy hardware, and Restricted Transactional Memory

(RTM) is a new instruction set interface to execute transac-

tions on the underlying TSX hardware.

Here we compare the Haswell RTM performance and en-

ergy of the Haswell implementation of RTM to those of other

approaches for controlling concurrency. We use a variety

of workloads to test the susceptibility of RTM’s best-effort

nature to performance degradation and increased energy

consumption. We compare RTM performance to TinySTM,

a software transactional memory implementation that uses

time to reason about the consistency of transactional data and

about the order of transaction commits.1 We highlight these

crossover points and analyze the impact of thread scaling on

energy expenditure.

We find that RTM performs well with small to medium

working sets when the amount of data (particularly that

being written) accessed in transactions is small. When data

contention among concurrent transactions is low, TinySTM

performs better than RTM, but as contention increases, RTM

consistently wins. RTM generally suffers less overhead than

TinySTM for single-threaded runs, and it is more energy-

efficient when working sets fit in cache.

II. EXPERIMENTAL SETUP

The Intel 4th Generation CoreTM i7 4770 processor com-

prises four physical cores that can run up to eight simultane-

ous threads when hyper-threading is enabled. Each core has

two eight-way 32 KB private L1 caches (separate for I and

D), a 256 KB private L2 cache (for combined I and D), and

an 8 MB shared L3 cache, with 16 GB of physical memory

on board. We compile all microbenchmarks, benchmarks,

and synchronization libraries using gcc v4.8.1 with -O3
optimization flag. We use the -mrtm flag to access the Intel

TSX intrinsics. We schedule threads on separate physical

cores (unless running more than four threads) and fix the

CPU affinity to prevent migration.

We modify the task example from libpfm4.4 to read both

the performance counters and the processor package energy

via the Running Average Power Limit (RAPL) [11] inter-

face. We verify these energy figures against measurements

at the ATX CPU power supply input of the motherboard and

find them to be strongly correlated (Spearman’s correlation

1We choose TinySTM because during our experiments we find that it
consistently outperforms other STM alternatives like TL2 (to which RTM
was compared in another recent study [10]).
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Figure 1. RTM Read-Set and Write-Set Capacity Test

coefficient ρ=0.9858). We implement Intel TSX synchro-

nization as a separate library and add RTM definitions to

the STAMP tm.h file. When transactions fail more than eight

times, we invoke reader/writer lock-based fallback code to

ensure forward progress. If the return status bits indicate

that an abort was due to another thread’s having acquired

the lock (in the fallback code), we wait for the lock to be

free before retrying the transaction. The following shows

pseudocode for a sample transaction.

Algorithm 1 Implementation of BeginTransaction
while true do

nretries← nretries + 1

status← xbegin()

if status = XBEGIN STARTED then
if arch read can lock(serialLock) then

return
else

xabort(0)

end if
end if
{*** fall-back path ***}
while not arch read can lock(serialLock) do

mmpause()

end while
if nretries ≥ MAX RETRIES then

break

end if
end while
arch write lock(serialLock);

return

III. MICROBENCHMARK ANALYSIS

A. Basic RTM Evaluation

We first quantify RTM’s hardware limitations that affect

its performance using microbenchmark studies. We detail

the results of these experiments below.

RTM Capacity Test. To test the limitations of read-

set and write-set capacity for RTM, we create a custom

microbenchmark, results for which are shown in Fig. 1.

The abort rate of write-only transactions tops out at 512

cache blocks (the size of L1 data cache). We suspect this is

because write-sets are tracked only in L1, and so evicting

any transactionally written cache line from L1 results in a

transaction abort. For read-sets, the abort rate saturates at

128K cache blocks (the size of L3 cache). This suggests

that evicting transactionally read cache lines from L3 (but

not L1) triggers transaction aborts, and thus RTM maintains

performance for much larger read-sets than write-sets.

RTM Duration Test. Since RTM aborts can be caused by

system events like interrupts and context switches, we study

the effects of transaction duration (measured in CPU cycles)
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Figure 2. RTM Abort Rate versus Transaction Duration

on success rate. For this analysis, we use a single thread,

set the working-set size to 64 bytes, and set the number of

writes inside the transaction to 0. This tries to ensure that

the number of aborts due to memory events and conflicts

remains insignificant. We gradually increase the duration by

increasing the number of reads within the transaction. Fig. 2

shows that transaction duration begins to affect the abort rate

at about 30K cycles and that durations of more than 10M

cause all transactions to abort (note that these results are

likely machine dependent).

RTM Overhead Test. Next we quantify performance

overheads for RTM compared to spin locks and the

atomic compare-and-swap (CAS) instruction. For this

test, we create a microbenchmark that removes ele-

ments from a queue (defined in the STAMP [12] li-

brary). We initialize the queue to 1M elements, and

threads extract elements until the queue is empty. Work

is not statically divided among threads. We first compare

RTM against the spinlock implementation in the Linux

kernel (arch/x86/include/asm/spinlock.h). We

then compare against a version of the queue implementation

modified to use CAS in queue_pop(). For RTM, we

simply retry the transaction on aborts.

We perform three sets of experiments. To observe the cost

of starting an RTM transaction in the absence of contention,

we first run single-threaded experiments. We repeat the

experiment with four threads to generate a high-contention

workload. Finally, we lower contention by making threads

work on local data for a fixed number of operations after

each critical section. Table I summarizes execution times

normalized to those of the lock-based version.

Type of synchronization
Contention None Lock CAS RTM
None 0.64 1 1.05 1.45
Low N/A 1 0.64 0.69
High N/A 1 0.64 0.47

Table I
RELATIVE OVERHEAD OF RTM VERSUS LOCKS AND CAS

Table I shows that the cost of starting a transaction

makes RTM perform worse than the other alternatives when

executing non-contended critical sections with few instruc-

tions. RTM suffers about a 45% slowdown compared to
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Characteristic Definition

Concurrency Number of concurrently running threads
Working-set sizea Size of frequently used memory
Transaction length Number of memory accesses per transaction
Pollution Fraction of writes to total memory accesses

inside transaction
Temporal locality Probability of repeated address inside transaction
Contention Probability of transaction conflict
Predominance Fraction of transactional cycles to total application

cycles

aWorking-set size for Eigenbench is defined per-thread.

Table II
EIGENBENCH TM CHARACTERISTICS

using locks and CAS, and it takes over twice the time of

an unsynchronized version. In contrast, our multi-threaded

experiments reveal that RTM exhibits roughly 30% and

50% lower overhead than locks in low and high contention,

respectively, while CAS is in both cases around 35% better

than locks. Note that transactions avoid hold-and-wait be-

havior, which seems to give RTM an advantage in our study.

When comparing locks and CAS, the higher lock overhead

is likely due in part to the ping-pong coherence behavior

of the cache line containing the lock and to cache-to-cache

transfers of the line holding the queue head.

B. Eigenbench Characterization

To compare RTM and STM in detail, we next study

the behaviors of Hong et al.’s Eigenbench [13]. This pa-

rameterizable microbenchmark attempts to characterize the

design space of TM systems by orthogonally exploring

different transactional application behaviors. Table II defines

the seven characteristics we use to compare performance and

energy expenditure of the Haswell RTM implementation and

the TinySTM [14] software transactional memory system.

Hong et al. [13] provide a detailed explanation of these

characteristics and the equations used to quantify them.

Unless otherwise specified, we use the following param-

eters in our experiments, results for which we average over

10 runs. Transactions are 100 memory references (90 reads

and 10 writes) in length. We use one small (16KB) and

one medium (256KB) working set size to demonstrate the

differences in RTM performance. Since L1 size has no

influence on TinySTM’s abort rates, we only show TinySTM

results for the smaller working set size. To prevent L1 cache

interference, we run four threads with hyper-threading dis-

abled as our default, and we fix the CPU affinity to prevent

thread migration. For each characteristic, we compare RTM

and TinySTM performance and energy (versus sequential

runs of the same code) and transaction-abort rates. For the

graphs in which we plot two working-set sizes for RTM,

the speedups and energy efficiency given are relative to the

sequential run of the same size working set.

Working-Set Size. Fig. 3 shows Eigenbench results over

a logarithmic scale as we increase each thread’s working

set from 8KB to 128MB. RTM performs best with the

smallest working set, and its performance gradually degrades

as working-set size increases. The performance of both RTM

and TinySTM drops once the combined working sets of

all threads exceed the 8MB L3 cache. RTM performance

suffers more because events like L3 evictions, page faults,

and interrupts trigger a transaction abort, which is not the

case for TinySTM. The speedups of both RTM and TinySTM

are lowest at working sets of 4MB: at this point, the

parallelized code’s working sets (16MB in total) exceed L3,

but the working set of the sequential version (4MB) still fits.

For working sets above 4MB, the sequential version starts

encountering L3 misses, and thus the relative performances

of both transactional memory implementations begins to

improve. Parallelizing the transactional code using RTM is

energy-efficient compared to sequential version when the

combined working sets of all threads fits inside the cache.

Transaction Length. Fig. 4 shows Eigenbench results as

we increase the transaction length from 10 to 520 memory

operations. When the working set (16KB) fits within L1,

RTM outperforms TinySTM for all transaction lengths. For

256KB working sets, RTM performance drops sharply when

the transaction length exceeds 100 accesses. Recall that

evicting write-set data from the L1 triggers transaction

aborts, but when the working set fits within L1, such

evictions are few. As the working set grows, the randomly

chosen addresses accessed inside the transactions have a

higher probability of occupying more L1 cache blocks,

and hence they are more likely to be evicted. In contrast,

TinySTM shows no performance dependence on working-

set size. The overhead of starting the hardware transaction

affects RTM performance for very small transactions. As

observed in the working-set analysis above, RTM is more

energy efficient than both the sequential run and TinySTM

for all transaction lengths when using the smaller working

set. When using the larger working set, RTM expends more

energy for transactions exceeding 120 accesses.

Pollution. Fig. 5 shows results when we test symmetry

(with respect to handling read-sets and write-sets) by grad-

ually increasing the fraction of writes. The pollution level

is zero when all memory operations in the transaction are

reads and one when all are writes. When the working set fits

within L1, RTM shows almost no asymmetry. But for the

larger working-set size, RTM speedup suffers as the level of

pollution increases. TinySTM outperforms RTM when the

pollution level increases beyond 0.4.

Temporal Locality. We next study the effects of temporal

locality on TM performance (where temporal locality is

defined as the probability of repeatedly accessing the same

memory address within a transaction). The results in Fig. 6

reveal that RTM shows no dependence on temporal locality

for the 16KB working set, but performance degrades for the
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Figure 3. Eigenbench Working-Set Size
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Figure 4. Eigenbench Transaction Length

256KB working set (where low temporal locality increases

the number of aborts due to L1 write-set evictions). In con-

trast, TinySTM performance degrades as temporal locality

increases, indicating that it favors unique addresses unless

only one address is being accessed inside the transaction

(locality = 1.0).

Contention. This analysis studies the behavior of TM

systems when the level of contention is varied from low

to high. We set the working-set size to 2MB for both

RTM and TinySTM. The level of contention is calculated

as an approximate value representing the probability of a

transaction causing a conflict (as per the probability formula

given by Hong et al. [13]). The conflict probability figures

shown in Fig. 7 are calculated at word granularity and hence

are specific to TinySTM. Since RTM detects conflicts at the

granularity of cache line (64 bytes), the contention level is

actually higher for RTM with the same workload config-

uration. When the degree of contention among competing

threads is very low, RTM performs better than TinySTM.

For low to medium contention, TinySTM considerably out-

performs RTM. However, for high contention workloads,

TinySTM performance degrades while RTM performance

remains almost the same.

Predominance. We study the behavior of the TM systems

when varying the fraction of application cycles executed

within transactions to the total number of application cycles.

For this analysis, we set working-set size to 256KB for both

TM systems, we set contention to zero, and we vary the

predominance ratio from 0.125 to 0.875. Fig. 8 shows that

performance for both RTM and TinySTM suffers as the ratio

of transactional cycles to non-transactional cycles grows.

This can be attributed to the overheads associated with the

TM systems: for the same level of predominance, TinySTM

introduces more overhead because it must instrument the

program memory accesses.

Concurrency. Next we study how the performance and

energy of RTM and TinySTM scale when concurrency is

increased from one thread to eight. Fig. 9 shows that RTM

scales well up to four threads. At eight threads, the L1

cache is shared between two threads running on the same

core. This cache sharing degrades performance for the larger

working set more than for the smaller working set because

hyper-threading effectively halves the write-set capacity of

RTM. In contrast, TinySTM scales well up to eight threads.

For the small working set, RTM proves to be more energy-

efficient than either TinySTM or the sequential runs.

The results from the Eigenbench analysis help us in

identifying a range of workload characteristics for which

either RTM or TinySTM is better performing or more

energy efficient. We next apply the insights gained from

our microbenchmark studies to analyze the performance and

energy numbers we see for the STAMP benchmark suite.

IV. HTM VERSUS STM USING STAMP

Next we use the STAMP transactional memory benchmark

suite [12] to compare the performance and energy efficiency

of RTM and TinySTM. We use the lock-based fallback

mechanism explained in Section II and run the applications

with input sizes that create large working sets and high

contention. We average all results over 10 runs. Fig. 10

shows STAMP execution times for RTM and TinySTM

normalized to the average execution time of sequential
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Figure 5. Eigenbench Pollution
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Figure 6. Eigenbench Temporal Locality
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Figure 7. Eigenbench Contention
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Figure 9. Eigenbench Concurrency
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(non-TM) runs. Fig. 11 shows the corresponding energy

expenditures, again normalized to the average energy of the

sequential runs. Results for single-threaded TM versions of

the benchmarks illustrate the TM system overheads.

bayes has a large working set and long transactions, and

thus RTM performs worse than TinySTM. This corresponds

to our findings in the Eigenbench transaction-length anal-

ysis in Fig. 4. As expected, RTM does not improve the

performance of bayes as the number of threads scales,

and TinySTM performs better overall. Since the time the

bayes’s algorithm takes to learn the network dependencies

depends on the computation order, we see significant devi-

ations in learning times for multi-threaded runs.

genome has medium transactions, a medium working-

set size, and low contention. Most transactions have fewer

than 100 accesses. Recall that in the working-set analy-

sis shown in Fig. 3(a) (for transaction length 100), RTM

slightly outperforms TinySTM for working-set sizes up to

4MB. On the other hand, TinySTM outperforms RTM when

contention is low (Fig. 7(a)). The confluence of these two

factors within genome yields similar performances for RTM

and TinySTM up to four threads. For eight threads, as

expected, TinySTM’s performance continues to improve,

whereas RTM’s suffers from increased resource sharing

among hyper-threads.

intruder is also a high-contention benchmark. As with

genome, RTM performance scales well from one to four

threads. Since intruder executes very short transactions,

scaling to eight threads does not cause as much resource

contention as for genome, and thus RTM and TinySTM

perform similarly. Even though this application has a small

to medium working set — which might otherwise give RTM

an advantage — its performance is dominated by very short

transaction lengths.

kmeans is a clustering algorithm that groups data items

in N-dimensional space into K clusters. As with bayes,

our 10 runtimes deviate significantly for the multi-threaded

versions. On average, RTM performs better than TinySTM.

The short transactions experience low contention, and the

small working set has high locality, all of which give

RTM a performance advantage over TinySTM. Even though

both TM systems show speedups over the sequential runs,

synchronizing the kmeans algorithm in TinySTM expends

more energy at all thread counts.

labyrinth routes a path in a three-dimensional maze,

where each thread grabs a start and an end point and

connects them through adjacent grid points. Fig. 10 shows

that labyrinth does not scale in RTM. This is because each

thread makes a copy of the global grid inside the transaction,

triggering capacity aborts that eventually cause the fallback

to using a lock. Energy expenditure increases for the RTM

multi-threaded runs because the threads try to execute the

transaction in parallel but eventually fail, wasting many

instructions while increasing cache and bus activity.
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Figure 11. RTM versus TinySTM Energy Expenditure for STAMP
Benchmarks

ssca2 has short transactions, a small read-write set, and

low contention, and thus even though it has a large working

set, it scales well to higher thread counts. Performance

for eight threads is good for both RTM and TinySTM. In

general, RTM performs better (with respect to both execution

time and energy expenditure) but not by much, as is to be

expected for very short transactions.

vacation has low to medium contention among threads

and a medium working set size. The transactions are of

medium length, locality is medium, and contention is low.

Like genome, vacation scales well up to four threads,

but performance degrades for eight threads because its read-

write set size is large enough that cache sharing causes

resource limitation issues.

yada has big working set, medium transaction length,

large read-write set, and medium contention. All these con-

ditions give TinySTM a consistent performance advantage

over RTM at all thread counts.

Our results in Fig. 11 indicate that the energy trends of

applications do not always follow their performance trends.

Applications like bayes, labyrinth, and yada expend

more energy as they are scaled up, even when performance

changes little (or even improves, in the case of yada).

Only intruder, kmeans, and ssca2 benefit from hyper-

threading under RTM. In contrast, most STAMP applications

benefit from hyper-threading under TinySTM, and those that

do not suffer only small degradations.

Fig. 12 shows the overall abort rates for all benchmarks,

including the contributions of different abort types. Based

on our observations of hardware counter values, the current
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Abort Type Description

Data-conflict/
Read-capacity

Conflict aborts and read-set capacity aborts

Write-capacity Write-set capacity aborts
Lock Conflict and explicit aborts caused by serialization locks
Misc3 Unsupported instruction abortsa

Misc5 Aborts due to none of the previous categoriesb

a
includes explicit aborts and aborts due to page fault/page table modification

b
interrupts, etc.

Table III
INTEL RTM ABORT TYPES

RTM implementation does not seem to distinguish between

data-conflict aborts and aborts caused by read-set evictions

from L3 cache, and thus both phenomena are reported as

conflict aborts. When a thread incurs the maximum number

of failed transactions and acquires the lock in the fallback

path, it forces all currently running transactions to abort. We

term this a lock abort. These aborts are reported either as

conflict aborts, explicit aborts (i.e., deliberately triggered by

the application code), or both (i.e., the machine increments

multiple counters). Lock aborts are specific to the fallback

mechanism we use in our experiments. Other fallback mech-

anisms that do not use serialization locks within transactions

(they can be employed in non-transactional code) do not

incur such aborts. Note that avoiding lock aborts does not

necessarily result in better performance since the lock aborts

mask other type of aborts (i.e., that would have occurred

subsequently). This can be seen in abort contributions shown

in the figure. As applications are scaled, the fraction of

aborts caused by locks increases because every acquisition

potentially triggers N -1 lock aborts (where N is the number

of threads).

The RTM_RETIRED:ABORTED_MISC3 performance

counter reports aborts due to events like issuing unsupported

instructions, page faults, and page table modifications. The

RTM_RETIRED:ABORTED_MISC5 counter includes

miscellaneous aborts not categorized elsewhere, such as

aborts caused by interrupts. Table III gives an overview

of these abort types. In addition to these counters, three

more performance counters represent categorized abort

numbers: RTM_RETIRED:ABORTED_MISC1 counts

aborts due to memory events like data conflicts and

capacity overflows; RTM_RETIRED:ABORTED_MISC2
counts aborts due to uncommon conditions; and

RTM_RETIRED:ABORTED_MISC4 counts aborts

due to incompatible memory types (e.g., due to

cache bypassing or I/O accesses). In our experiments,

RTM_RETIRED:ABORTED_MISC4 counts are always less

than 20, which we attribute to hardware error (as per the

Intel specification update [15]). In all our experiments,

RTM_RETIRED:ABORTED_MISC2 is zero.

Figure 12. RTM Abort Distributions for STAMP Benchmarks

V. IMPACT OF PROGRAMMING STYLE ON RTM

PERFORMANCE

Transactions are intended to simplify synchronization in

multi-threaded programs. Unfortunately, programmers who

overlook the best-effort nature of hardware support like RTM

may find that their applications do not perform as expected.

Programmers may inadvertently make design decisions that

limit the ability of the hardware to successfully commit

transactions. In this section, we examine two popular trans-

actional applications whose performance can be significantly

improved with minimal programming effort — and without

finer-grain synchronization — by simply keeping in mind

the general constraints of the hardware. We demonstrate that

software modifications can help minimize capacity aborts,

conflict aborts, and other RTM-unfriendly events.

A. Case Study I: intruder

This benchmark emulates a network intrusion detection

system that processes packets in parallel. When the first

packet in a flow (or session) is captured, a node is inserted

into a red-black tree. Subsequent packets are inserted into a

list at the node corresponding to the flow. When all packets

of a flow are collected, the flow is removed from the tree

and pushed into a decoded queue. Flows are subsequently

extracted and compared against a database of attack signa-

tures. The main transaction encloses the reassembly phase

that inserts packets into the tree of incomplete flows.

Reducing read-set size and transaction duration. The

reassembly phase maintains a sorted list of fragments in

a flow. Each new packet captured is inserted according

to its sequence number. Each reassembly transaction thus

traverses a potentially long list to find the correct location.

Since program correctness does not rely on keeping captured

fragments sorted at all times, we can simply prepend the

fragments onto the list in constant time and only sort the

list when the flow is complete. We thus reduce both the

transaction footprint and the duration for the common case

of inserting a packet into an existing flow. The benefits
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are twofold: first, shorter-running reassembly transactions

reduce the likelihood of conflicts with concurrent tree op-

erations on other flows; and second, accessing fewer cache

lines minimizes the likelihood of suffering capacity-induced

aborts, allowing more transactions to commit.

Table IV shows results for experiments running the out-

of-the-box baseline and our modified version of intruder
with the recommended large input set. Our simple op-

timization reduces execution time by almost 50% in all

thread configurations, and it reduces the abort rate from

28% to 14% in runs with four threads. Transaction duration

is halved, going from about 1800 to about 900 cycles,

on average. For the single-threaded configuration, memory-

induced aborts (capacity+conflict) for the main transaction

(TID1) decline from 86% to 36%. Note that the hardware

implementation of RTM may interpret capacity aborts as

conflict aborts when passing the status to the abort handler.

B. Case Study II: vacation

vacation emulates a travel reservation system imple-

mented as an online transaction processing system similar

in design to SPECjbb2000 [16]. The database consists of

four tables implemented as red-black trees. The customer

tree associates customers with their list of reserved travel

items, and the three remaining trees contain the reservable

items, the associated prices, and the available quantities.

Client threads interact with the database in three types

of sessions: reservations, cancellations, and updates. Each

session is enclosed in a coarse-grain transaction to maintain

database validity. Reservation sessions query the item tables

to search for the price and availability of a given item and

then add reservations to the customer’s list (decreasing the

number of available instances appropriately).

In our experiments, we scale the database down to 64K

relations to reduce capacity aborts, and we run only user

sessions (-u 100) to reduce conflict-induced aborts as much

as possible. We execute a total of 32M transactions. This

workload allows us to better observe the effects of our

optimizations compared to a more RTM-friendly baseline.

Reducing read-set size and transaction duration. We

find that the programming style used in vacation cre-

ates unnecessarily long transactions due to redundant tree

lookups. For example, in a reservation session, the bench-

mark searches the tree to check for an item’s existence and

then again looks up the item to find its price. Similarly,

when item reservations are added to a customer’s list, items

queried in the previous step are looked up again to update

their availability. With little extra effort, programmers could

merge the queries for availability and price, both of which

return references to the found item. The reservation step

can use this pointer to directly access items to be booked,

obtaining the price and updating availability while avoiding

redundant tree searches.

The way elements are placed in data structures can

lengthen transactions and increase the sizes of their read-

write sets. In vacation, the customer reservation list

is kept sorted by type of item and ID, and every new

reservation traverses the list. The list is never searched for

a specific reservation, though, and cancellation sessions do

not require any specific ordering of the elements (since they

simply iterate through the list to return each booking to

the system). We simply change the code to always make

insertions at the head of the list, avoiding traversals in the

common case (reservations).

Reducing aborts due to page faults. After the trans-

action has performed all queries in a reservation ses-

sion, it allocates new memory to insert new reserva-

tions into the customer list. Accesses to this newly allo-

cated memory can cause page faults that cause expensive

RTM_RETIRED:ABORTED_MISC3 aborts. If aware of this

problem, programmers can improve RTM performance by

triggering those page faults before the transaction. It suffices

to modify the the STAMP thread-local memory allocator to

touch new memory locations before returning.

Table V shows the results of comparing the base-

line against our optimized version of vacation (which

includes the changes described above, applied cumula-

tively). With rather straightforward changes in the code

we reduce execution time by approximately 25% for

all thread configurations. Abort rates drop from 21%

to 7% in four-thread runs because we eliminate vir-

tually all aborts from page faults (which generally

fall under the HLE-unfriendly instruction category or

RTM_RETIRED:ABORTED_MISC3). Transactions are also

around 10% shorter. Note that after applying the optimiza-

tions, aborts of type RTM_RETIRED:ABORTED_MISC5
(e.g., from interrupts) become more important as we increase

the number of threads.

VI. RELATED WORK

Hardware transactional memory systems must track mem-

ory updates within transactions and detect conflicts (read-

write, write-read, or write-write conflicts across concurrent

transactions or non-transactional writes to active locations

within transactions) at the time of access. The choice of

where to buffer speculative memory modifications has mi-

croarchitectural ramifications, and commercial implementa-

tions naturally strive to minimize modifications to the the

cores and on-chip memory hierarchies on which they are

based. For instance, Blue Gene/Q [8] tracks updates in the

32MB L2 cache, and the IBM System z [9] series and the

canceled Sun Rock [6] track updates in their store queues.

Like the Haswell RTM implementation that we study here,

the Vega Azul Java compute appliance [7] uses the L1 cache

to record speculative writes. The size of transactions that

can benefit from such hardware TM support depends on the
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Table IV
INTRUDER : KEY STATISTICS FOR BASELINE VERSUS OPTIMIZED CODE

intruder Overall TID1
Execution % Cycles/ Abort Abort % % %

Threads Time Reduction Speedup Transaction Rate Rate Capacity Conflict Other
Base 1 15.5 - 1.00 1847 0.13 0.31 0.23 0.63 0.14

2 8.5 - 1.82 1830 0.19 0.40 0.17 0.64 0.19
4 4.9 - 3.16 1699 0.28 0.51 0.11 0.60 0.29

Opt 1 7.9 49 1.00 944 0.05 0.13 0.17 0.19 0.64
2 4.4 48 1.80 959 0.08 0.17 0.10 0.37 0.53
4 2.7 45 2.93 894 0.14 0.22 0.05 0.48 0.47

Table V
VACATION : KEY STATISTICS FOR BASELINE VERSUS OPTIMIZED CODE

vacation Overall Abort distribution
Execution % Cycles/ Abort % % %

Threads Time Reduction Speedup Transaction Rate Memory HLE-unfriendly Other
Base 1 38.8 - 1.00 3360 0.11 0.21 0.76 0.03

2 20.1 - 1.93 3284 0.14 0.31 0.64 0.05
4 10.6 - 3.66 3095 0.21 0.43 0.51 0.06

Opt 1 29.4 24.23 1.00 2725 0.02 0.89 0.01 0.10
2 14.9 25.87 1.97 2720 0.03 0.66 0.02 0.32
4 7.9 25.47 3.72 2711 0.07 0.13 0.01 0.86

capacity of the chosen buffering scheme. Like us, others

have found that rewriting software to be more transaction-

friendly improves hardware TM effectiveness [7].

Previous studies investigate the characteristics of hard-

ware transactional memory systems. Wang et al. [8] use

the STAMP benchmarks to evaluate hardware transactional

memory support on Blue Gene/Q, finding that the largest

source of TM overhead is loss of cache locality from

bypassing or flushing the L1 cache.

Yoo et al. [10] use the STAMP benchmarks to compare

Haswell RTM with the TL2 software transactional memory

system [17], finding significant performance differences be-

tween TL2 and RTM. We perform a similar study and find

that TinySTM consistently outperforms TL2, and thus we

choose the former as our STM point of comparison. Our

RTM scaling results for STAMP benchmark concur with

their results.

Wang et al. [18] evaluate RTM performance for con-

current skip list scalability, comparing against competing

synchronization mechanisms like fine-grained locking and

lock-free linked-lists. They use the Intel RTM emulator to

model up to 40 cores, corroborating results for one to eight

cores with Haswell hardware experiments. Like us, they

highlight RTM performance limitations due to capacity and

conflict misses and propose programmer actions that can

improve RTM performance.

Others have also studied power/performance trade-offs

for TM systems. For instance, Gaona et al. [19] perform

a simulation-based energy characterization study of two

HTM systems: the LogTM-SE Eager-Eager system [2]

and the Scalable TCC Lazy-Lazy system [20]. Ferri et al.

[21] estimate the performance and energy implications of

using TM in an embedded multiprocessor system-on-chips

(MPSoCs), providing detailed energy distribution figures

from their energy models.

In contrast to the work presented here, none of these stud-

ies analyzes energy expenditure for a commercial hardware

implementation.

VII. CONCLUSIONS

The Restricted Transactional Memory support available

in the Intel Haswell microarchitecture makes programming

with transactions more accessible to parallel computing

researchers and practitioners. In this study, we compare RTM

and TinySTM, a software transactional memory implemen-

tation, in terms of performance and energy. We highlight

RTM’s hardware limitations and quantify their effects on

application behavior, finding that performance degrades for

workloads with large working sets and long transactions.

Enabling hyper-threading worsens RTM performance due to

resource sharing at the L1 level. Given these limitations,

we show examples of how programmers can optimize TM

applications to better utilize the Haswell support for RTM.
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