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Abstract In the search for new paradigms to simplify multithreaded programming,
Transactional Memory (TM) is currently being advocated as a promising alterna-
tive to deadlock-prone lock-based synchronization. In this way, future many-core
CMP architectures may need to provide hardware support for TM. On the other hand,
power dissipation constitutes a first class consideration in multicore processor designs.
In this work, we propose Selective Dynamic Serialization (SDS) as a new technique
to improve energy consumption without degrading performance in applications with
conflicting transactions by avoiding wasted work due to aborted transactions. Our
proposal, which is implemented on top of a hardware transactional memory (HTM)
system with an eager conflict management policy, detects and serializes conflicting
transactions dynamically (at run-time). In its simplest form, in case of conflict, one
transaction is allowed to continue whilst the rest are completely stalled. Once the
executing transaction has finished, it wakes up several of the stalling transactions.
More elaborated implementations of SDS try to delay this behavior until serializa-
tion of transactions is profitable, achieving the best trade-off between performance,
energy savings and network traffic. SDS implementations differ from each other in
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Selective dynamic serialization in hardware transactional 915

the condition that triggers the serialization mode. We have evaluated several SDS
schemes using GEMS, a full-system simulator implementing the LogTM-SE Eager–
Eager HTM system, and several benchmarks from the STAMP suite. Results for a
16-core CMP show that SDS obtains reductions of 6 % on average in energy consump-
tion (more than 20 % in high contention scenarios) in a wide range of benchmarks
without affecting, on average, execution time. At the same time, network traffic level
is also reduced by 22 %.

Keywords Many-core CMPs · Hardware transactional memory · Transactions ·
Run-time serialization · Energy consumption · Execution time

1 Introduction and motivation

During the past 10 years, we have witnessed a transcendental change of paradigm
towards parallel architectures. Most processor manufacturers have released products
that incorporate several execution cores on a single chip. The Intel Core and AMD APU
families are two well-known examples of how chip multiprocessors (CMP) span every
market segment, from server solutions to laptop computers. Whereas it is expected
that the number of cores will grow, reaching dozens or even hundreds of them in the
next years [1], multithreaded programming remains a challenging task, even for expe-
rienced programmers. The majority of the software has not been able to keep up with
this fundamental architectural shift. Software developing techniques have not evolved
fast enough to grasp these new computational resources offered by multiple compu-
tational cores, mainly because of the difficulty of parallel programming. Exploiting
thread-level parallelism constitutes a major challenge for programmers, and without
it we can no longer expect that the increasing number of available transistors on chip
will yield application performance improvements with the same efficiency as in the
past.

Transactional memory (TM) is currently considered as a promising parallel pro-
gramming paradigm, and processors implementing TM support in hardware have
already been announced. Examples go from the AMD’s Advanced Synchronization
Facility, a set of ×86 extensions that provide a very limited form of hardware TM
support [2] to processors supporting TM, such as the Sun’s Rock prototype [3], the
chips of IBM BlueGene/Q [4], or the Intel’s Haswell microarchitecture [5].

TM borrows the concept of transaction from the database world and brings it into
the shared-memory programming model [6]. Transactions are no more than blocks
of code whose execution must satisfy the serializability and atomicity properties.
Programmers simply declare the transaction boundaries leaving the burden of how
to guarantee such properties to the underlying TM system thereafter. A TM system
can be implemented in either software, hardware, or as a combination of both [7].
The common denominator in all implementations is that transactions are speculatively
executed, which hides from programmers the main pathologies associated with locking
techniques such as priority inversion, convoying and deadlocks. As a consequence,
programmers are armed with an intuitive synchronization abstraction that can greatly
help simplify the development of multithreaded programs.
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Hardware transactional memory (HTM) systems are usually classified in terms of
how they tackle with data version management (VM) and conflict detection (CD).
In this work, we focus our attention on the extensively used Eager–Eager systems.
On eagerly versioned systems, updates are done in place, i.e., transactional stores
overwrite old values residing in cache memory after storing them in an undo log. With
eager CD, dependency violations are checked on the fly during the transaction lifetime
for each transactional load and store.

On the other hand, the emphasis in microprocessor design has shifted from high
performance to a combination of both high performance and low power. Power con-
sumption has also become a first class consideration in multicore processor designs,
and energy-efficient architectures are a must. This is true not only for embedded
systems [8,9] (such as mobile devices), but also for server and even desktop sys-
tems [10]. HTM literature has mostly focused on improving performance, simplicity
[11] or even flexibility [12]. A recent study [13] has compared the two predomi-
nant HTM approaches (Eager–Eager and Lazy–Lazy) in terms of their performance
and energy consumption, concluding that there is significant room for improvement
when considering energy consumption in Eager–Eager approaches. The main reason
for this is that Eager–Eager approaches perform poorly in high-contention scenar-
ios [13]. Unfortunately, these scenarios may not be rare in some future transactional
applications.

In this work, we present Selective Dynamic Serialization (SDS henceforth), a new
technique aimed at reducing energy consumption in HTM systems implementing eager
conflict management by dynamically (at run-time) serializing transactions that cannot
make progress. Instead of continuously retrying a memory access that caused a conflict
with another active transaction that previously accessed the same memory position (as
done in Eager–Eager systems [14]), the offending transaction is completely stalled
entering into a low-power mode that saves energy and bandwidth. Once the offended
transaction has completed its execution, it wakes the stalled transaction up. The stalled
transaction can still abort if another transaction conflicts with it, but a priori wasted
work would have already been avoided. In this way, an Eagersystem with SDS would
be able to manage conflicts more efficiently in a high-contention scenario, obtaining
significant reductions in terms of energy consumption and, in some cases, execution
time. The latter is due to the fact that in these situations SDS would also facilitate
forward progress. As an example, typical critical sections in transactional applica-
tions include modifying an iterator over a list, or inserting an element in some linked
structures. The sequence of addresses would be as follows:

Read A — Read B — Read C — Write C

In a high-contention scenario (i.e., several transactions trying to execute the
sequence at the same time), this sequence implies that when a transaction reaches
the last operation (Write C), the rest of executing transactions could have already
read address C. This leads to a conflict. Eventually only the highest priority transac-
tion will commit, but experiencing a significant delay (once all conflicts are solved)
and aborting other transactions (which results in wasted work). The competition will
start again after restarting transactions’ execution, thus entering a cycle of conflicts.
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In this case, forward progress is compromised. Situations of this kind are found in
intruder, for example, a benchmark of the STAMP suite [15]. With SDS, after the
conflict is detected, transactions would be executed in turn. In particular, just one of
the conflicting transactions would be allowed to continue execution. Once this trans-
action commits, it would signal another transaction to resume execution beyond the
conflicting point.

In this work, we study several implementations of SDS, which differ in the condition
that triggers the serialization mode (SM). In the simplest one, which we call DS (from
Dynamic Serialization), one transaction is allowed to continue in case of conflict whilst
the rest are completely stalled. Once the executing transaction has finished, it wakes
up several of the stalling transactions. This “always serialize from the first conflict”
case was originally proposed in [16]. Now, we extend such work by presenting in this
manuscript more elaborated implementations of SDS that try to delay this behavior
until serialization of transactions is profitable, achieving the best trade-off between
performance, energy savings and network traffic.

Serialization has already been considered in two previous works ([8,17]). In par-
ticular, Moreshet [17] proposed a naive static serialization mechanism in which two
conflicting transactions are re-issued in serialized mode, preventing parallel specu-
lation in other aborting transactions. On the other hand, serialization in [8] consists
of stopping non-serialized cores until the commit of the serialized one with the sub-
sequent performance penalty. In this way, and compared with these two proposals,
the dynamic behavior of SDS brings the following two advantages. First, transactions
can still make progress from the beginning of their execution until the presence of a
conflict. A transaction will not be serialized if it is not necessary, unlike with static
implementations [8,17]. Second, SDS favors parallel speculation as much as possible
since serialization is performed at lower level (cache line). SDS also presents a delay in
the activation of the serialization mode, achieving a better trade-off between situations
where normal Eager–Eager systems scale well and the energy efficiency of serializa-
tion when forward progress is compromised. The condition of when this serialization
mode is activated is the key to distinguish the different SDS flavors proposed in this
work.

The rest of the paper is organized as follows. Sect. 2 contains an in-depth description
of the proposed SDS technique. In Sect. 3, we detail the configuration of the simulation
environment and the workloads used to evaluate SDS. Performance, energy consump-
tion and network traffic figures of several SDS implementations are analyzed in Sect.
4. In Sect. 5, we discuss some related researches. Finally, conclusions are given in
Sect. 6.

2 Selective dynamic serialization of transactions in HTM

In this section, we present several implementations of the SDS idea proposed in this
work. All implementations are carried out on top of an Eager–Eager HTM system
(in particular, LogTM-SE [14]), and they only differ in the condition that triggers the
serialization of transactions. Through run-time serialization of some transactions, our
proposal tries to reduce the energy wasted due to aborted and even-stalled transactions.
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Finally, SDS can be applied to any other Eager–Eager HTM system that employs the
cache coherence protocol to detect conflicts on the fly.

SDS does not change the default behavior of LogTM-SE in absence of conflicts.
However, unlike other serialization mechanisms [8,17], SDS serializes transactions in
a more flexible way depending on some parameters. From the simplest “always seri-
alize from the first conflict” case originally presented in [16] (base DS), to serializing
only when several conflicts or aborts have taken place. This flexibility allows us to
perform an in-depth analysis of the benefits of the dynamic serialization of transactions
without incurring in some of its drawbacks with some access patterns. Results show
that SDS can save energy with no performance penalty (the latter is even improved
in some situations). To do that, SDS incorporates a decision logic that enables the
serialization mode when high levels of contention have been detected. SDS operates
at cache line level so that transactions run smoothly until a conflict in a particular cache
block is detected and the system enables the serialization mode. In such a situation,
SDS serializes the conflicting transactions by guaranteeing forward progress of one
transaction and stalling the others in a low-power state. Once the winner transaction
has finished, it wakes up the highest-priority transaction among all the stalled ones. In
this way, SDS not only minimizes the energy consumed by the stalled transactions, but
also the number of aborted transactions, thus, reducing wasted energy. To do so, SDS
requires the hardware support detailed in Sect. 2.1. This hardware allows to implement
the different flavors of dynamic serialization (DS) presented in Sects. 2.2 and 2.3. The
protocol exemplified in Sect. 2.4 refers to the base DS protocol where serialization
mode is enabled from the beginning.

2.1 Architectural aspects of SDS

In LogTM-SE, all transactions make progress by storing new values directly in the
memory location of the variable (or “in place”), while preserving old values “on the
side” during its execution and making the changes visible to the rest of the system dur-
ing commit. When a transaction detects a conflicting remote request thanks to the cache
coherence protocol, it responds with a negative acknowledgment (NACK), indicating
that the requester transaction must stall its execution until the offended transaction
releases isolation over the requested data upon commit/abort. Thereafter, the offend-
ing transaction keeps retrying until the commit/abort of the offended transaction, thus
wasting a variable amount of energy that depends on the level of contention. Differ-
ences between several approaches to SDS rely on choosing the event that triggers the
activation of the Serialization Mode, while the rest of the system remains equal. There
are two possible events: number of subsequent conflicts received for the same address
(NACK_SDS) and number of subsequent aborts experimented (ABORT_SDS).

Instead of continuously trying to get access to an address, SDS avoids this per-
sistent retrying process by stalling the offending transaction after entering into the
serialization mode. In this low-power state, the offending transaction will not try to
get access to the conflicting cache block again without prior notification from another
transaction. During that period, the offending transaction will not generate any cache
coherence message, but it will have to process incoming cache coherence requests
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Fig. 1 Structure of the serialization table (ST)

from other transactions. Moreover, it must keep track of all NACKed transactions
to wake up the highest-priority one at commit/abort time. To accomplish this task,
every transaction has a hardware structure called Serialization Table (ST) with one
valid entry per each different cache block address that was NACKed by the transac-
tion. Experiments conducted in Sect. 4 have shown that just six entries are enough
to prevent overflow situations. This way, the total size of each ST is just 127 bytes.
Figure 1 shows the structure of the ST. As it can be seen, each ST has the following
fields:

– V : valid bit that indicates whether the entry is currently being used (has valid
information).

– Address: cache block address that has been NACKed.
– C1 (Core 1): core which runs the NACKed transaction that requests Address with

the a priori highest priority (single threaded core).
– PriC1: priority level of C1 (timestamp of C1).1

– C2 (Core 2): core which runs the NACKed transaction that also requested Address
with the second highest priority.

– PriC2: priority level of C2 (timestamp of C2).
– Procs: bit vector of the NACKed cores for Address.

When a transaction receives a request that conflicts with any of the addresses in its
read or write sets, there are four possible courses of action:

1. The cache block address of the request is present in the ST and the offending trans-
action has higher priority than C1. The transaction copies C1/PriC1 into C2/PriC2,
sets the new values for C1/PriC1 and updates the Procs field.

2. The cache block address of the request is present in the ST and the offending
transaction has higher priority than C2. The transaction sets the new values for
C2/PriC2 and updates the Procs field.

3. The cache block address of the request is present in the ST and the offending
transaction has lower priority than C2. The transaction just updates the Procs field.

1 Our implementation uses the timestamps employed by LogTM-SE as priority mechanism, but any other
similar method could be used.
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4. The cache block address of the request is not present in the ST. The transaction
allocates a new entry in the ST with the cache block address of the request (Address),
the identity of the requesting core (C1) and the priority of the offending transaction
(PriC1). Finally, the transaction sets the corresponding bit in the Procs field.

2.2 NACK_SDS

The two implementations of SDS presented in this work (called NACK_SDS and
ABORT_SDS) have the same hardware requirements: a serialization mode bit and a
counter of one or more bits (saturating counter) per thread. When a conflict is detected
in NACK_SDS, the saturating counter (SC) (initially set to zero) is incremented. When
the SC saturates (current transaction has experienced certain number of conflicts to the
same address), NACK_SDS sets the serialization mode bit enabling the serialization
mode for that thread. From that time all conflicting transactions with the one running
within this thread will be serialized (also entering in the serialization mode) until
commit.

To accelerate the process of serializing transactions, the saturating counter can be
initially set to a value greater than zero. In our particular case, we initialize every
saturating counter with half of its capacity in case the conflicting transaction is in the
serialization table. On the contrary, it is set to zero.

When a conflict is subsequently resolved before entering the serialization mode
(the transaction “pass” the conflicting situation but serialization is not needed), the
SC is reset to give the transaction the same probability of success to normal execution
(not serialized one) in the presence of new conflicts.

Section 4 shows results for NACK_SDS with a one-, two- or three-bit SC. We
have decided to evaluate a special case with a zero-bit SC to represent the most
aggressive and simplest scheme where serialization mode is always enabled. This
design is equivalent to DS, originally presented in [16].

2.3 ABORT_SDS

The condition used in ABORT_SDS to increase the SC counter is the presence of
aborts. That is to say, instead of counting the number of conflicts to a particular
address, ABORT_SDS increases the SC counter every time an abort is experienced
(because of repeated conflicts to the same address or aborts to several addresses). In
this case, the saturating counter can only be reset at commit (unlike in NACK_SDS
where it is reset every time a conflict is resolved). Again, every SC in ABORT_SDS
is initialized to half of its capacity during a commit in case the transaction has been
recorded in the serialization table.

2.4 Protocol

Our implementations of SDS are based on the MESI cache coherence protocol,
although SDS could be built atop any other cache coherence protocol with a simi-
lar behavior such as MOESI. SDS does not modify the cache coherence protocol at
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Fig. 2 Anatomy of the
UNSTALL message added in
our proposal.

all, it only adds a single short control message called UNSTALL with the following
fields (Fig. 2):

– Dest: destination core.
– Address: cache block address that was NACKed by this transaction. Address field

in the ST.
– C2: C2 field in the ST.
– PriC2: PriC2 field in the ST.
– Procs: bit vector of the NACKed cores for address. Procs field in the ST.

At commit/abort time, a transaction scans its ST and sends an UNSTALL message
per each valid entry, that is, per each conflicting cache block NACKed during its
lifetime. The destination of the message is C1 and the message includes the Address,
C2, PriC2 and Procs fields of the ST entry (the bit corresponding to C1 is reset). Upon
reception of an UNSTALL message, a stalled transaction updates its ST using the
information carried by the UNSTALL message and resumes execution. If there is an ST
entry for the Address of the UNSTALL message, the Procs field of the ST entry is ORed
with the Procs field of the UNSTALL message, and the C1/PriC1 and/or C2/PriC2 fields
of the ST entry are modified following steps 1 through 3 of the procedure explained
in Sect. 2.1. Otherwise, a new entry is added to the ST where Address, C2, PriC2 and
Procs fields of the UNSTALL message are copied into the Address, C1, PriC1 and
Procs fields of the new ST entry. In this way, the protocol enables transactions to build
a list of stalled transactions so that the highest priority ones are intended to occupy
the first positions. It is worth noting, though, that transactions deal with imprecise
information because transactions only know the first two positions of the list in the
best case (the Procs field is unordered). Nevertheless, our experimental results revealed
that two ordered elements at the head of the list approach the ideal case with exact
information. Finally, since highest-priority transactions are supposed to populate the
heads of the stalled transactions lists, they will not abort in case of conflicts with
other transactions, thus guaranteeing forward progress. Figure 3 shows and example
in which DS avoids aborts and network traffic.

Figure 3 shows the initial state of five transactions (T0–T4) with the STs of trans-
actions T1 and T2 at the top. Transactions T0 through T4 start their execution at time
t0 through t4, respectively—RX means that the transaction reads cache block address
X, while WY means that the transaction writes cache block address Y. In Fig. 3b, T1
sends a NACK message from T0 since address D was previously written by T1. Then,
T1 adds a new entry to its ST with Address D, and 0 and t0 as C1 and PriC1, respec-
tively, and sets the bit of the Procs field corresponding to T0. In the meantime, T0
stalls so that no further retries are sent to T1 until the UNSTALL message is received.
A similar scenario due to conflicting access to address A takes place between T2 and
T3. Next, in Fig. 3c, T1 serializes T2, adds a new entry to its ST with Address C, and
2 and t1 as C1 and PriC1, respectively, and sets the bit of the Procs field corresponding
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(a) (b)

(c)

(d)

Fig. 3 Dynamic serialization example

to T2. While stalled, T2 serializes T4 due to a conflicting access to address A. T2
updates C2 and PriC2 with 4 and t4, respectively, because T4 has lower priority than
T3. At this point, all transactions other than T1 are stalled. In Fig. 3d, T1 commits
and scans its ST. Therefore, it sends an UNSTALL message to T0 and T2. The Procs
fields of both messages are empty, since T1 did not serialize any other transactions on
addresses D and C. When T2 commits, it sends an UNSTALL message to T3 whose
Procs fields identifies T4 as an stalled transaction. Finally, T3 commits and unstalls
T4 which also commits. Note that T3 did not send any NACK message to T4, but T3
inherited T4 from T2.

Finally, SDS also copes with deadlock detection. LogTM-SE implements a conser-
vative deadlock detection mechanism based on timestamps and a “possible cycle bit”
that it sets whenever a NACK message is sent to an older transaction. In this way, if
a transaction receives a NACK message from an older transaction and the “possible
cycle bit” is set, the transaction is enforced to abort. With SDS, a deadlock could go
unnoticed because NACKed transactions get stalled. To prevent this situation from
happening, SDS adds a second “possible cycle bit” that is set whenever a NACK
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message from an older transaction is received. In this case, if the transaction is about
to send a NACK message to an older transaction and the second “possible cycle bit”
is set, the transaction must abort as well.

3 Evaluation environment

In this section, we describe the evaluation environment used in this work. We start
by giving the details about how the Eager–Eager HTM systems considered in this
work have been implemented. Additionally, we list the consumption models used to
characterize energy consumption. In particular, we focus on the energy consumed in
the on-chip memory hierarchy. Finally, we end with a description of the benchmarks
used to conduct the experiments.

3.1 System settings

We use a full-system execution-driven simulator based on the Wisconsin GEMS toolset
[18], in conjunction with Wind River Simics. We rely on the detailed timing model
for the memory subsystem provided by GEMS’s Ruby module, with the Simics in-
order processor model. Simics provides functional correctness for the SPARC ISA and
boots an unmodified Solaris 10. We perform our experiments assuming a tiled CMP
system, as described in Table 1. Particularly, we simulate a 16-core configuration with
private L1 I&D caches and a shared, multibanked L2 cache consisting of 16 banks
of 512 kB each. We have left another core aside to run the operating system (OS)
in a isolated way from the application threads to avoid intrusions from the same one
in benchmarks’ execution and getting uncorrupted statistics. The OS still takes the
control of the benchmarks execution when needed (i.e., during an exception). The L1
caches maintain inclusion with the L2. The private L1 data caches are kept coherent
through an on-chip directory (at L2 cache banks), which maintains bit-vectors of
sharers (which are included in the tags’ part of the L2 cache banks) and implements
the MESI protocol. The tiles are connected through a 2D-mesh network. Each tile
contains a router where the private L1, the slice of L2 and the memory controller are
connected to, plus the links to the neighboring tiles. In this 4×4 2D-network, each
router has between 5 and 7 ports, with an average of 6 ports per router.

To compute energy consumption in the on-chip memory hierarchy, we consider both
the caches and the interconnection network. The amount of energy consumed by the
interconnection network has been measured based on Orion 2.0 [19]. In particular, we
have extended the network simulator provided by GEMS with the consumption model
included in Orion. Table 2 shows the values of some of the parameters assumed for
the interconnection network. For those not listed in the table, we use the default values
given in Orion. On the other hand, the energy spent in the memory structures (L1, L2)
were measured based on the consumption model of CACTI 5.3 rev 174 [20]. In the
case of the L2 cache, we distinguish the accesses that return cache blocks from those
that only involve the tags’ part of the L2 cache (i.e., those that would be performed by
the directory controller to retrieve just the sharing information for a particular memory
block). Obviously, the latter entails less energy.
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Table 1 System parameters
MESI Directory-based CMP

Cores 16, simple issue, in order,
non-memory IPC = 1

Memory and directory settings

L1 Cache I&D Private, 32 kB, split, 2 way, 1-cycle
latency

L2 Cache Shared, 8 MB, unified 4 way,
12-cycle latency

L2 Directory Bit Vector,6-cycle latency

Memory 4 GB, 300-cycle latency

Network settings

Topology 2D mesh

Link latency 2 cycle

Link bandwidth 16 Bytes/cycle

Table 2 Parameters of Orion
2.0

Parameter Value

in_port 6

tech_point 45

Vdd 1.0

transistor type NVT

flit_width 128 (bits)

The Ruby module contains an implementation of LogTM-SE, an Eager–Eager
system that uses signatures for transactional book-keeping. We have extended the
MESI cache coherence protocol originally used by LogTM-SE to support the SDS
process described in Sect. 2. Our serialization table uses six entries, more than enough
to avoid any overflow situation with the STAMP benchmarks. Finally, the undo log
used in LogTM-SE is a data structure mapped in virtual memory and thus, its size
is not limited by any hardware structure. We assume perfect signatures to check for
conflicts.

3.2 Benchmarks settings

For the evaluation, we use seven out of eight transactional benchmarks extracted from
the STAMP suite version 0.9.10 [15]. These applications allow to stress a TM system
in several ways. To show a wide range of cases, we evaluate all kinds of benchmarks
that present low/moderate/high contention and/or large read and write set sizes and.
The application Bayes was excluded, since it exhibits unpredictable behavior and high
variability in its execution times [21]. Table 3 describes the benchmarks and the values
of the input parameters used in this work.

4 Evaluation

In this section, we present the results obtained for an Eager–Eager system (particularly,
LogTM-SE) extended with the different flavors of the SDS idea proposed in this work.
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Table 3 Workloads and inputs
Benchmark Input

Genome -g512 -s32 -n32768

Intruder -a10 -l16 -n4096 -s1

Kmeans-high -m15 -n15 -t0.05 -i random-n2048-d16-c16

Labyrinth -i random-x32-y32-z3-n96

Ssca2 -s14 -i1.0 -u1.0 -l9 -p9

Vacation-high -n4 -q60 -u90 -r1048576 -t4096

Yada -a10 -i ttimeu10000.2

In particular, we consider the simplest implementation of SDS, in which transactions
are serialized every time a conflict is observed (LogTM-SE_DS), and the two less
aggressive implementations of SDS described in Sects. 2.2 and 2.3 (ABORT_SDS
and NACK_SDS, respectively). In LogTM_DS, the serialized mode is enabled from
the beginning of the execution. Remember that it does not affect the normal execution
until a conflict takes place. In this case, one of the transactions will be serialized2.
For ABORT_SDS and NACK_SDS, we have evaluated three counter sizes in each
case. ABORT_SDS_x and NACK_SDS_x refer to both flavors of SDS, respectively,
where x represents the size of the serialized counter in bits. For example, results for
ABORT_SDS with a serialized counter of three bits are labeled as ABORT_SDS_3
in the following graphs. In this way, ABORT_SDS_3 will allow up to seven retries of
the same transaction before entering into serialized mode. The same nomenclature is
used for NACK_SDS. Note that LogTM_DS is equivalent to NACK_SDS_0.

We perform a comparison between these HTM systems in terms of execution time.
Next, we study the energy consumption of each system when executing the transac-
tional workloads. Finally, we also compare the amount of network traffic that has been
generated. Note that some graphs include error bars. They represent several executions
(20 times) of the same benchmark, but with some random variations in the memory
latency (within 2 %) that generate different data access patterns.

4.1 Execution time results

For the seven transactional benchmarks pointed out in Sect. 3, Fig. 4 shows the exe-
cution times that are obtained for LogTM-SE (from left to right, last bar) and the
three implementations of SDS considered in this work: LogTM-SE_DS (first bar),
ABORT_SDS (next three bars) and NACK_SDS (next three bars). In all cases, execu-
tion times have been normalized with respect to those obtained with the LogTM-SE
system. Moreover, to have a clear understanding of the results, Fig. 4 divides the
execution times into the following categories: Abort (time spent during aborts), Back-
off (explained next), Barrier (time spent in barriers), Commit (1 cycle), Non_xact
(time spent in non-transactional execution), stall_active (active time waiting until
another transaction ends: in this case the access to the address is continuously retried),

2 Note that LogTM_DS would be equivalent to NACK_SDS_0.
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Fig. 4 Breakdown of the execution times

stall_passive (time waiting until another transaction ends: in this case the core is
in a low power mode), Xact_useful (useful transactional time), Xact_wasted (trans-
actional time wasted because of aborts). The Back-off fraction represents the time
spent before restarting transactions. The use of back-offs aims to avoid contention
situations that arise when several transactions are being aborted repeatedly. Its upper
bound raises according to the number of retries of the current aborting transaction.
We have observed that without this back-off mechanism, the amount of wasted time
(Xact_wasted) drastically increases in some cases as the number of aborts grows. All
systems employ a hardware exponential back-off mechanism that emulates the orig-
inal software method, to reduce energy consumption due to interferences from that
kind of implementation.

As it can be derived from Fig. 4, none of the implementations of SDS outperforms
the others for all the applications. As expected, serialization of transactions conveys a
small overhead in execution time for the majority of the benchmarks. This overhead
goes from 0 % (in the case of ssca2) to 11 % (for yada). Remember that the main goal
of SDS is to reduce energy consumption by serializing conflicting transactions without
increasing significantly the execution time. Nevertheless, for applications exhibiting
significant contention among the transactions (such as intruder), very important reduc-
tions in execution time (about 30 %) can be obtained when contention is reduced by
means of serializing the execution of transactions.

Regarding the two most elaborated SDS implementations proposed in this work
(ABORT_SDS and NACK_SDS), it is worth noting that both of them are able to
reduce the performance degradation introduced by the simplest and aggressive SDS
implementation (LogTM-SE_DS), which turns into serialized mode whenever the first
conflict is detected. On the contrary, several aborts and conflicts (for ABORT_SDS
and NACK_SDS, respectively) must be experienced before transactions are started
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to be serialized. Obviously, these less aggressive implementations take more time to
react in high contention scenarios (such as intruder), where LogTM-SE_DS is the
winner. Among all the configurations plotted in Fig. 4, ABORT_SDS_2 achieves the
best results in average execution time, even improving LogTM-SE by 2 %.

Another important observation is that in LogTM-SE_DS, ABORT_SDS and
NACK_SDS the predominant stall phase is the stall_passive. Whereas, all stalls fall
into the stall_active category in LogTM-SE. Remember that stall_passive means that
the transactions enters into a low-power mode, where no new messages are generated
and dumped into the network and of course there are no new cache accesses from
these transactions allowing to save energy and network traffic.

The discussion below highlights important observations and presents insights
gained from a detailed analysis of the interaction between the three SDS implemen-
tations and the behavior of individual workloads.

Genome This workload exhibits three execution phases where the second one dom-
inates the overall performance. These accesses are predominantly non-contended and
a Eagerscheme such as LogTM-SE performs really well. With this premises, the seri-
alization is not justified because the amount of saved work that it would entail is
quite small compared with the time to wake up in chain the serialized transactions.
Nevertheless, the overhead that the simplest SDS implementation (LogTM-SE_DS)
introduces is noticeable (7.5 %). ABORT_SDS and NACK_SDS reduce the probabil-
ity of serialization, resulting in lower overhead compared with LogTM-SE (just 5 %
for ABORT_SDS_3, ABORT_SDS_2, NACK_SDS_1 and NACK_SDS_2).

Intruder This workload shows high contention and transactions acquire exclusive
ownership to data before they are guaranteed to commit. Furthermore, it presents
a high probability of conflicts and leads to large stalls and chains of dependencies
and aborts. This is a pathological behavior exhibited by Eager–Eager systems. This
kind of applications typically presents a poor performance when compared with lazy
approaches [13]. Obviously in this scenario, reducing the likelihood of conflict favors
forward progress. LogTM-SE_DS achieves the most significant reduction in execution
time (29 %), closely followed by ABORT_SDS_1 and ABORT_SDS_2 (26 %). We
have observed that the number of aborts is reduced from 153,000 to 95,000 in LogTM-
SE_DS. In addition, we have found that in these applications the number of conflicts
before a possible cycle is detected, and consequently, an abort is raised, is very small.
This reduces the chance of entering into the serialized mode in NACK_SDS and it
obtains the worst results, especially for the larger size counters (remember that the
counter is reset each time a transaction aborts).

Kmeans-high This workload is mainly non-transactional (white bars in Fig. 4), but it
exhibits moderate levels of contention in its transactional part. Despite the fact that its
transactional part is about 20 %, LogTM-SE_DS increases the execution time by 10 %,
which represents 50 % of its transactional execution time. An Eager–Eager approach
performs well with this level of contention, and serialization is counterproductive
from the execution time point of view. On the contrary, the other more elaborated SDS
schemes are able to completely hide this overhead (especially, ABORT_SDS_3) by
precluding the serialization of transactions in most cases. In addition, they translate the
small stall_active phase exhibited by LogTM-SE into the energy-efficient stall_pasive
phase, increasing energy efficiency and reducing network traffic levels.
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Fig. 5 Breakdown of energy consumption

Labyrinth It is characterized by long transactional time, large write sets and medium
contention. Furthermore, its behavior is not always the same. Labyrinth tries to find a
path in a maze (three-dimensional matrix of 32 × 32 × 3) following a variant of Lee’s
algorithm. The calculation of the path and its addition to the global maze is performed
in a single transaction. First the global matrix is read locally by the transaction. Next,
a path is worked out with the local copy, and finally the path is updated to the global
maze if no conflicts happen. In order to scale performance with the number of the
on-chip cores, labyrinth makes use of early release, that is, the isolation over the set
of read addresses is released after doing the copy with the aim of reducing conflicts
(hardware support is needed). Transactional times are so long that if a conflict occurs
at the beginning of a transaction, it will take a lot of time to be resolved. Results
generated by this workload present a high variability, because it depends significantly
on the interleaving of threads. Its most important transaction presents large write sets
(more than 200 addresses) and a long execution time. An abort is extremely costly and
there is no clear winner in this case.

Ssca2/Vacation-high These benchmarks do not have real conflicts, and thus Eager–
Eager approaches perform and scale really well. There are no significant differences
between normal execution and those with SDS.

Yada It has a large working set and exhibits high contention. Aborts are common
in these workloads and penalize the overall execution and the xact_wasted proportion
represents a significant fraction of the execution time. The stall_active fraction of
the execution is also very significant. Serialization in this scenario does not favor
execution time because of the extra overhead in waking up the serialized transaction,
but it manages to translate the stall_active fraction of the execution into the energy-
efficient stall_pasive. As we will see in Sects. 4.2 and 4.3, this results into important
savings in terms of energy and network traffic.
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4.2 Energy consumption results

Figure 5 plots dynamic energy consumption for LogTM-SE, LogTM-SE_DS,
NACK_SDS and ABORT_SDS. Again, several sizes for the saturating counter are
considered in both NACK_SDS and ABORT_SDS. As before, results have been nor-
malized with respect to LogTM-SE. Additionally, we split the energy consumed in
each case into the following categories: energy spent accessing the L1 and L2 caches
(L1 and L2, respectively), and energy spent in the network routers and links (Router
and Link, respectively). The amount of energy spent in the caches is related to the
number of accesses to each one of them, and thus with the number of aborts. More
aborts means retrying more accesses to the caches. Link energy is due to the aver-
age link utilization or the number of flits that cross every link. The energy model for
the router in Orion 2 exhibits a sublinear growth with respect to the network aver-
age load. Furthermore, energy consumed in routers is related with the execution time
too.

For most applications, the three SDS implementations improve or at least keep
the same results than the base case when energy consumption is considered. Only for
kmeans-high LogTM-SE_DS increases energy consumption by 7.5 % when compared
to LogTM-SE as a consequence of the degradation in execution time it introduces. For-
tunately, the most sophisticated SDS implementations do not degrade energy consump-
tion. Among all SDS schemes considered in this work, ABORT_SDS_2 represents the
most balanced alternative in terms of both execution time and energy consumption.
On the one hand, it does not degrade energy consumption in genome, kmeans-high,
ssca2 and vacation-high. On the other hand, it reduces energy consumption by 4, 9 and
29.5 % in labyrinth, yada and intruder respectively, resulting in average reductions
of 6 %.

The advantages in terms of energy consumption that SDS brings comes from two
sources: the reduction in the number of aborts and the reduction in the number of
network messages during conflicts. The latter mainly affects the energy consumed in
the links of the interconnect, whilst the former also has impact on the energy consumed
in the routers and L2 caches. By reducing the number of aborts, SDS implementations
are able to cut down the amount of wasted work, which results in energy savings in the
L2 caches and network routers and links. On the other hand, by stopping transactions
when conflicts arise and, when solved, letting them go, SDS schemes do not generate
any network traffic while a transaction is stopped (stall_passive), which translates into
important energy savings in the the links of the interconnection network. Finally, less
network utilization and lower execution times mean that less energy is spent in the
routers.

In general, results in terms of energy consumption follow closely those reported in
terms of execution time. The only exception is yada, for which the SDS schemes
introduced some degradation in terms of execution time. However, when energy
consumption is considered, we observe that all SDS implementations bring signif-
icant savings, as a consequence of important reductions in the energy consumed
in the links of the interconnect, which also translates into less network traffic (see
Sect. 4.3).
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Fig. 6 Normalized network traffic

4.3 Network traffic results

Network traffic measured as number of flits for LogTM-SE, LogTM-SE_DS,
NACK_SDS and ABORT_SDS is shown in Fig. 6. As before, results have been
normalized with respect to LogTM-SE. In general, LogTM-SE_DS generates less
network traffic than LogTM-SE (approximately 22 % less, on average). The reason
can be found in the high number of retries that are needed in LogTM-SE in case of
conflicts. The difference in network traffic is considerable in most cases except for
kmeans, vacation and ssca2. As already explained, transactions in these benchmarks
either barely conflict or are very short. The rest of the benchmarks are characterized
by high contention and/or by the large size of their transactions [15]. During the stall
phase in LogTM-SE (stall_active), intensive usage of the interconnection network
is made, because a transaction retries continuously the access to the corresponding
memory address until the owner stops sending the NACK response, or the transac-
tion has to abort. LogTM-SE_DS not only saves that wasted work, but also avoids
conflicts that can lead to an abort by stalling conflicting transactions. The other two
SDS schemes try to imitate the behavior of the simplest approach and they achieve
20 % of total reduction in network traffic. In genome our proposals reduce network
traffic up to 20 %, while the energy consumption is approximately the same than that
of the base case. This is because the execution time is higher when transactions are
serialized. This trade-off between network traffic and execution time is found in all
the applications when energy consumption is considered. Special attention should be
paid to labyrinth and yada. The former shows average reductions of up to 35 % with
the SDS schemes while barely affecting to the results in terms of energy consumption.
This is because what really dominates both execution time and energy consumption
in this case is the cost of the aborts so that the reductions in traffic do not have a big
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impact. On the other hand, in yada, serialization brings reductions in network traffic
ranging between 47 and 55 % when compared with LogTM-SE. In this case, these
reductions in network traffic brings important savings in energy consumption even
although SDS hurts execution time. Also note that different to intruder, NACK_SDS
beats ABORT_SDS and reaches the traffic levels of the aggressive LogTM-SE_DS
implementation. For yada, we have seen that the average number of conflicts before
an abort is detected is higher, which makes NACK_SDS start serializing transactions
earlier.

5 Related work

Transactional memory has become a promising parallel paradigm alternative to lock
synchronization [22]. While locks suffer from deadlocks, priority inversions and
convoying, TM trusts in executing transactions in parallel. If any conflict happens,
the transaction changes are become visible to the whole system. On the contrary,
changes are discarded. TM can be implemented in either software [23–27], hardware
[11,14,28,29], or as a combination of both [7,12,30]. Our focus is on HTM.

Nowadays, the implications of energy consumption are a first-class consideration,
requiring trade-offs against performance. This is true not only for embedded systems
[8,9] (such as mobile devices), but also for server and even desktop systems [10,31].
TM literature has traditionally focused on improving performance, simplicity or even
flexibility. For example, [32–34] are several recent proposals aimed at increasing
concurrency between transactions to reduce execution times. In [35], Titos-Gil et al.
show how effective store management can improve the performance of eager HTM
systems. Ceze et al. try to simplify the conceptual and implementation complexity of
HTM in [11]. FlexTM [36] is a high-performance TM framework that allows software
to determine when (eagerly, lazily, or in a mixed fashion) and how to manage conflicts,
while employing hardware to manage transactional state and to track conflicts.

Regarding energy consumption in the context of TM, Klein et al. [37] performed a
study comparing STM and conventional lock-based systems, and also proposed new
mechanisms to improve energy efficiency of STM. For HTM, Moreshet et al. [17] per-
formed an early comparison in terms of energy consumption and performance between
the lock approach and TM considering only the energy spent in the memory structures.
In this previous work, Moreshet proposed a naive static serialization mechanism to
improve energy efficiency in which two conflicting transactions are re-issued in serial-
ized mode, preventing parallel speculation in other transactions. Subsequently, Sanyal
et al. [38] applied the well-known clock gating technique in the context of HTM to save
energy. In particular, they propose a novel protocol, which gates processors dynami-
cally on each abort and un-gates them depending on the number of aborts suffered and
the state of the conflicting transactions. Ferri et al. [8] present a simple and energy-
efficient TM design for embedded architectures, at the cost of performance. One of
their proposals is to perform a static serialization of transactions. If one transaction
reaches this mode, the rest of the cores must stop their execution until the transaction
commits. This reduction in speculation and performance suits well with embedded
systems, but not with general purpose ones. In [13], two well-known HTM systems
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(namely, Eager–Eager LogTM-SE system [14] and Lazy–Lazy Scalable TCC sys-
tem [39,40]) are compared in terms of energy consumption. The results of this study
show that LogTM-SE and other eager approaches present a significant potential for
improvement in energy consumption. On the other hand, in [41], Cristal et al. show
a case use of how efficient the HTM support can help techniques aimed at increasing
energy efficiency in current multicores. In particular, it is proposed to use HTM sup-
port for rolling back the effects of wrong executions caused by the reduction of the
supply voltage of cores. Reducing the supply voltage improves energy efficiency, but
at the same time increases the likelihood for wrong executions of programs.

In this work, we have presented and evaluated SDS, a technique that can be imple-
mented on top of any Eager–Eager HTM system. SDS is aimed at improving energy
efficiency in Eager–Eager HTM systems and reducing the pressure on the intercon-
nection network, but without hurting execution time. Our implementations of SDS
have been based on LogTM-SE [14]. Different to [8,17], serialization in SDS is only
performed when conflicts happen and no extra cost in terms of increased number
of aborts is incurred to raise this mode. As another difference, SDS works at cache
line level, therefore it is a fine-grained serialization detection mechanism that favors
speculation as much as possible.

6 Conclusions

In this work, we present SDS, a new technique that improves energy consumption in
HTM systems that implement eager conflict management, such as LogTM-SE. SDS is
aimed at dynamically serializing transactions in high-contention scenarios (i.e., several
transactions fighting for the same data at the same time). In these cases, previous works
[13] have shown that the energy efficiency of Eager–Eager systems collapses. This is
because conflicts are managed either by re-trying the memory access that caused the
conflict until it disappears or by aborting one or more transactions (depending on the
interactions among the write sets of the transactions involved in the conflict), which
results in a significant amount of energy being wasted. On the contrary, SDS tries to
detect this kind of situation and dynamically serializes only the involved transactions.

Selective Dynamic Serialization is a refinement of DS originally presented in [16]
that aims to achieve the benefits of DS (i.e., important savings in terms of energy
consumption and network traffic), but without incurring the overheads in execution
time that DS has for some applications. To do so, SDS makes use of saturating counters
that are incremented when conflicts are detected (NACK_SDS) or when aborts raise
(ABORT_SDS). Depending on the values of these counters, transactions enter the
serialized mode or not. It is important to note that DS is a particular case of SDS,
concretely NACK_SDS_0.

We have implemented all these flavors of SDS on top of the GEMS full-system
simulator, and we have compared them against the original LogTM-SE Eager–Eager
HTM system. Results in terms of execution time, energy consumption and network
traffic have been presented. In general, SDS obtains average reductions of 6 % in
energy consumption (up to 42 % in high-contention scenarios) at no performance cost.
Furthermosre, SDS is able to save about 22 % of the network traffic levels generated

123



Selective dynamic serialization in hardware transactional 933

by LogTM-SE. This is due to SDS precludes transactions from continuously retrying
conflicting memory accesses. In addition, SDS entails minimal cost in terms of extra
hardware. For all these reasons, we can conclude that SDS constitutes an interesting
optimization for future HTM systems.
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